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ABSTRACT
Food environments can profoundly impact diet and related diseases.
Effective, robust measures of food environment nutritional quality
are required by researchers and policymakers investigating their
effects on individual dietary behavior and designing targeted public
health interventions. The most commonly used indicators of food
environment nutritional quality are limited to measuring the binary
presence or absence of entire categories of food outlet type, such
as ‘fast-food’ outlets, which can range from burger joints to salad
chains. This work introduces a summarizing indicator of restaurant
nutritional quality that exists along a continuum, and which can be
applied at scale to make distinctions between diverse restaurants
within and across categories of food outlets. Verified nutrient data
for a set of over 500 chain restaurants is used as ground-truth data
to validate the approach. We illustrate the use of the validated in-
dicator to characterize food environments at the scale of an entire
jurisdiction, demonstrating how making distinctions between dif-
ferent shades of nutritiousness can help to uncover hidden patterns
of disparities in access to high nutritional quality food.
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1 INTRODUCTION
Initiatives that improve diets are needed [22, 30, 37] as poor diets
led to an estimated 11 million deaths globally in 2017 [13], and are
a key cause of major chronic diseases including obesity, cancer,
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and heart disease [42]. Emerging evidence has shown that food
environments—the physical and social spaces in which people ac-
quire and consume food—can profoundly impact diet and related
diseases [16, 37]. The key mechanisms proposed to explain the
relationship between food environments and unhealthy eating be-
haviors are that (i) low access to healthy food options can induce
unhealthy choices out of convenience or necessity [10, 11, 40], and
(ii) exposure to an abundance of unhealthy options can cue or
trigger unhealthy eating [14, 39, 41].

Effective, robust measures of food environment quality are re-
quired by researchers and policymakers investigating the effects of
the food environment on individual dietary behavior and designing
targeted public health interventions. For both applications, there
is great value in a single indicator that can provide a summary as-
sessment of nutritional quality in a single score that can be applied
to characterize diverse neighborhoods and food environments, at
scale [36].

The most commonly used indicators of food environment nutri-
tional quality, food deserts [40] and food swamps [14], are limited
in scope, measuring the binary presence or absence of single cate-
gories of food outlet type. Neighborhoods are characterized as food
deserts if there are few or no healthy food outlets in a range of
proximity (e.g., 0.5 or 1 mile) of residents living in a neighborhood,
where healthy outlets are operationalized as supermarkets [27].
Food swamps are defined as neighborhoods that have a high per-
centage of unhealthy food outlets relative to all total outlets, or rela-
tive to healthy food outlets, where unhealthy food outlets are oper-
ationalized as fast-food or fast-food and convenience stores [14, 25].
While food sold at fast-food outlets, supermarkets, and convenience
stores has been demonstrated to have a meaningful relationship on
nutritional health [12, 15, 23], the focus on a single type of outlet is
limited given the great variability in types of food outlets and the
nutritional quality menu offerings within each type.

Fast-food restaurants are a prime example of the continuum of
nutritional quality of menu offerings. Restaurants are commonly
identified as fast-food if they fall under a certain category in the
North American Industry Classification System (NAICS) [28], that
of limited-service restaurant [14, 40] (code 722513). This classifica-
tion system was developed over 20 years ago when most limited-
service restaurants served a similar type of American menu, e.g.
burgers, fries, and shakes. There has been a shift in the food offered
at limited-service restaurants over the past couple of decades, in-
cluding the introduction of fast and healthy foods such as salads;
‘bowls’; and non-fried beans, rice, and vegetable dishes. However,
measures and classification systems have not yet caught up, and
restaurants falling under NAICS code ‘limited-service restaurant’
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range from McDonald’s to the salad chain Sweetgreen. A robust,
continuous indicator of food environment nutritional quality is
needed, that moves beyond the binary focus on the prevalence
of outlets within single categories of food outlets, to capture the
gradation of the nutritional quality within and across categories.

1.1 Related work
While an indicator-based approach has not been previously devel-
oped at the level of a food outlet, neighborhood, or food environ-
ment, quantified and continuous indicators have been designed
for evaluating the nutritional quality of an individual food item or
diet based on its nutritional components. These indicators focus on
the quality and balance of diverse nutritional components rather
than single out the total amount of energy or calories, since it is
well established that the caloric content of a food is not correlated
with recommended nutrient availability, and that poor nutrition is
caused not only by consuming high-calorie foods, but from over-
consuming low-nutrient foods [20, 26, 38].

Nutritional quality indicators combine multiple nutrient or di-
etary components simultaneously, on a density basis. One type of
approach, the Healthy Eating Index (HEI), relies on the amounts
of key dietary components (i.e., total fruit, whole fruit, legumes,
etc.) [21]. Another type of approach, nutrient profile density scor-
ing, requires the amounts of individual macro and micronutrients
(i.e., protein, sodium, calcium) composing a food item. Both types
of approaches have been demonstrated to be reliable and valid tools
for quantifying nutritional quality [17, 24, 35].

A couple of analyses have applied the HEI to summarize the qual-
ity of the food environment at a limited scale. Reedy et al. (2015) sug-
gest applying the HEI to the retail food environment, illustrating the
approach on a sample dollar menu from a fast-food restaurant [32].
Hearst et al. (2013) applied the HEI to 8 fast-food outlets in a study
analyzing trends in nutritional quality over time [18]. Meanwhile,
nutrient density scoring of individual food items has been used in
multiple regulatory applications, including evaluating labeling and
marketing of snack foods, food tax programs, and defining school
food standards [1, 9, 19, 24, 29, 34]. A recent study used nutrient
density scoring across a larger sample of food items sold at 700
chain restaurants to illustrate the absence of a linear relationship
between caloric and nutrient content in food items [20].

However, nutrient density scores have yet to be deployed to
characterize restaurants across food environments, at scale. The
absence of an approach developed at scale may be due to measure-
ment, in that it has been difficult to assess the nutrients available
in the millions of menu offerings across the hundreds of thousands
of food outlets across the food environment. In this paper, we show
that this is now possible, given the wide availability of digital menu
data, and the introduction of an approach to estimate nutrients for
given menu items.

1.2 Overview
This work contributes to the ability to characterize the nutritional
quality of diverse food environments across a continuum and at
scale. We focus on the retail restaurant food environment, where
the majority of Americans’ food budget is spent [33]. We introduce
a summarizing indicator of restaurant nutritional quality, RNQ,

that takes in descriptions of food items from a restaurant’s menu,
estimates their nutrient values, and returns an overall score of the
restaurant’s nutritional density across all menu items. The RNQ
measure can be applied to compare restaurants within a food outlet
category, or across categories. Verified nutrient data for a set of 522
chain restaurants from the nutrition data company Nutritionix is
used as ground-truth data to validate the approach.

We illustrate the use of the RNQ measure to characterize food
environments at the scale of a jurisdiction, focusing on restau-
rants falling within the same food outlet category. The example
demonstrates how making distinctions between different shades
of nutritiousness within a category can help to uncover hidden
patterns of disparities in access to high nutritional quality food.

The paper is organized as follows. We develop the restaurant-
level RNQ indicator, and describe the validation analysis using
ground-truth nutrient information, in Methods. The Results section
presents findings of the validation analysis and an example illus-
trating the use of the continuous indicator of restaurant nutritional
quality in the food environment of the greater Los Angeles area.
In the Discussion, we interpret findings and discuss future work,
which will scale the approach introduced here across food outlet
categories and environments.

2 METHODS
2.1 Approach
We approach the development of a restaurant-level indicator across
three key steps: (1) obtaining a target menu dataset representing
restaurant names and descriptions of each menu item, (2) obtain-
ing or estimating the nutritional content of menu items at scale
across the entire restaurant food environment, and (3) scoring the
nutritional quality of a restaurant.

Step (1), establishing a target restaurant menu dataset to score,
may be done by accessing menu data from various software com-
panies that maintain extensive databases of metadata on points of
interest, including food outlets and their menus, such as Yelp [8]
and Foursquare [5]. Limited selections of restaurant menu items
coming only from chain restaurants are available from personal
nutrition-logging applications such as Nutritionix [7], Chronome-
ter [4], and MyFitnessPal [6]. In this work, we use restaurant menu
data from Nutritionix as our target dataset, as it represents the
largest database of verified restaurant menu items and their nutri-
ents, and can thus be used for validation analysis of the proposed
method.

Step (2) involves estimating the nutritional content of menu
items, i.e., the levels of the macro and micronutrients based on
all the composing food ingredients, given the menus and menu
item-level descriptions obtained from Step (1). This is necessary to
estimate because nutritional content is not provided by restaurants,
with the notable exception of chain restaurants with more than 20
outlets, as mandated by the FDA under the Affordable Care Act as of
May 2018 [20, 31]. Here, we introduce an approach to characterize
the food environment in the absence of nutrient information posted
on restaurant menus, enabling quantification of the nutrition of
the food environment including and beyond large chain restau-
rants. We make use of the United States Department of Agriculture
(USDA) National Nutrient Database for Standard Reference [2].
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This nutrition dataset, curated by the USDA, is the major source of
food composition data in the US used by researchers, policymakers,
health professionals, and others, and is the starting point for dieti-
cians in scoring the nutritional quality of an individual’s diet [32].
We retrieve matches to food items in the target dataset from this
database using its API and built-in language-based matching algo-
rithm. We add additional natural language postprocessing steps to
improve the matching based on food item name descriptions.

Step (3) involves developing an aggregate indicator of the nutri-
tional quality of a restaurant based on its menu offerings, the RNQ.
We make use of an existing nutritional quality index – nutrient
density scoring [34, 35]. We apply nutrient density scoring at the
menu-item level, and then aggregate up to the level of an entire
restaurant through a median-based statistic.

2.2 Restaurant-level indicator of nutritional
quality

Here we describe our process for designing an index of the health-
fulness of a restaurant based on its menu offerings. This step begins
after a target dataset of restaurants and their menu item descrip-
tions as they appear on the menu has been obtained (Step 1).

2.2.1 Preprocessing menu data. There are twomain steps in the pre-
processing process: data cleaning and data filtering. Data cleaning is
applied to remove unnecessary fields while preserving information
of interest including restaurant name, restaurant category, menu
item name, ingredients, and food category. Menu item strings are
also cleaned in this step. To select menu items for the accurate
nutritional scoring of single-serving adult meals we apply a set of
keyword filters. We remove children’s menus, dishes for sharing,
beverages, and single-ingredient foods. This is done to create an
index that is comparable across restaurants based on their diversity
of offerings.

2.2.2 Estimating the nutritional quality of menu items. After menu
item filtering, we fetch food nutritional details of each menu item
from the United States Department of Agriculture (USDA) National
Nutrient Database for Standard Reference through its queryable
API, FoodData Central . It contains nutrient profile information for
over 8,000 branded and unbranded food items, each with up to 70
nutrients, although not all are available for each menu item. We
access seven nutrient values for calories, protein, carbohydrates,
total fat, saturated fat, fiber, and sugar.

For each USDA-matched menu item, there exists a “score” field,
which represents a relative score indicating how well the food
matches the search criteria. We use the score as a matching thresh-
old. We retain all matched menu items from the USDA database
with a score above 100. Sensitivity analysis determined that a match-
ing score threshold of 100 results in the most accurate results, when
compared with ground truth data.

Menu items obtained from the USDA database are post-processed
to minimize inaccuracies and inconsistencies. We remove menu
itemswith 0 calories, andwithmissing nutritional values.We rebase
extreme outliers, applying a maximum cap limit across nutrient
values. We also apply the same set of keyword filters mentioned
in Section 2.2.1 to the USDA matched menu items to ensure the
matched sample contains only single-serving adult meals.

Finally, to obtain an overall nutrient value content for each nutri-
ent category for the target dataset menu item, we average over the
nutrient values of each retained menu item match from the USDA
database.

2.3 Restaurant nutritional density scoring
using menu item nutrients

Nutrient density scoring aggregates the nutritional information of
a food or menu item into a single score by measuring the relative
balance of recommended to restricted nutrients present. It can be
seen as a representation of the overall nutritional quality of a food
item.

There are a handful of available nutrient density scoring sys-
tems from the nutrition literature, most applying some relationship
between the value of recommended nutrients (e.g., protein, fiber)
to restricted nutrients (i.e. saturated fat, added sugars, sodium).
These approaches range in the number of nutrient constituents
they require, whether both recommended and restricted (by USDA
guidelines) nutrients are included, and whether a binary or con-
tinuous score is produced. A review of such methods is provided
in Santos et al. (2021) [32] and Ho et al. (2020) [20]. Of these, two
available scoring systems meet the criteria for this study of being
(1) based on nutrients available from almost all foods provided
in the USDA database and (2) defined along a continuous scale:
Scheidt and Daniel’s “Ratio of Recommended to Restricted Nutri-
ents” (RRR) [35] and Fulgoni, Keast and Drewnowski’s “Nutrient
Rich Foods” (NRF) score [17].

Of these two methods, we choose to develop our restaurant-level
nutrition indicator using the RRR. While both methods are nor-
malized to daily recommended values (DRV) of each nutrient, only
RRR balances the levels of recommended and restricted nutrients
by setting them in a weighted ratio centered around 1, providing a
more interpretable index.

The RRR score is a ratio of percent DRV of six recommended
nutrients over five nutrients to restrict per serving, with weights
added to balance the contribution of the recommended nutrients
and the restricted nutrients. The DRV refers to the U.S. Dietary
Guidelines and daily reference values, e.g. daily recommended in-
take of protein is 50 grams [3].

The original RRR equation contains the recommended nutrients
protein, fiber, vitamin A, vitamin C, iron, and calcium; and the re-
stricted nutrients sugars, cholesterol, saturated fat, and sodium [35].
We modify the equation based on the nutrients available in the ma-
jority of the USDA data and the majority of menu items in the
Nutritionix ground truth data (Section 2.4), 60% of which does not
contain values for the 4 micronutrients vitamin A, vitamin C, iron,
and calcium. The modified RRR score (RRR-m) is expressed as:

𝑅𝑅𝑅𝑚 =

1
2 ( protein𝑚50 𝑔 + fiber𝑚

25 𝑔)
1
5 ( calories𝑚2000 𝑘𝐶𝑎𝑙 + cholesterol𝑚

300 𝑚𝑔 + saturated fat𝑚
20 𝑔 + sugars𝑚

50 𝑔 + sodium𝑚
2400 𝑚𝑔)

(1)

Through the use of the weights and the ratio, the score is balanced
such that scores close to 0 represent lower nutrient density; scores
equal to 1 indicate an equal proportion of recommended to re-
stricted nutrients; and scores above 1 include more recommended
nutrients than restricted nutrients.
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2.3.1 Restaurant nutritional quality (RNQ) score. A restaurant’s
nutritional quality (RNQ) score is computed as the median of the
RRR-m scores across all menu items within that restaurant, as sen-
sitivity testing determined this statistic to produce more accurate
RRR-m scores, compared with ground truth data (Section 2.4) than
the mean. To ensure sufficient items for stable estimates of restau-
rant scores, we do not attempt to obtain a restaurant-level score for
restaurants with less than 5 menu items, after all filters have been
applied. Sensitivity analyses determined restaurant-level RRR-m
scores were robustly accurate for restaurants with ≥ 5 menu items.

2.4 Validation Analysis
2.4.1 Data and preprocessing. We collect a dataset providing the
nutrient profiles for menu items, Nutritionix, as ground-truth for
validation and calibration analysis. Nutritionix is a software com-
pany that aggregates and manages nutrition data on menu items
from a large selection of chain restaurant brands, retail foods, and
common foods for use by personalized health mobile applications
and food industry websites. The database consists of 38,275 menu
items across 1,436 restaurant chain brands in the United States,
organized at the level of menu items sold by each chain. For each
menu item within a brand, we obtain information on its name (as a
phrase), calories, and values of the macronutrients sodium, protein,
dietary fiber, saturated fat, cholesterol, and sugars.

To create a dataset fit for RNQ scoring, we implement the data
post-processing steps applied to matches from the USDA database
described in Section 2.2.2, using keywords to filter out items that
do not represent single-serving adult meals, removing items with 0
calories or missing nutrient values, and rebasing extreme outliers.
We retain for scoring only restaurants with ≥ 5 menu items, losing
35.5% of restaurants due to this filter. After all reductions, 7,013
menu items from over 522 restaurant brands remain in the dataset
for ground truth analysis.

2.4.2 Comparative analysis with ground-truth data. Our valida-
tion analysis focuses on comparing RNQ scores for each of the
522 restaurant brands in the post-processed Nutritionix database
obtained using estimated nutrient values and the ground truth nu-
trient values for each of the 7,013 menu items. We estimate the
nutrient values for each target menu item using the approach in
Section 2.2.2, fetching menu-item matches from the USDA database,
and post-processing the matched menu item data. We then obtain
an RRR-m score for each menu item and an RNQ score for each
restaurant brand, which we call the the RNQ-USDA, as described
in Section 2.3. Separately, using the nutrient values provided in the
ground truth dataset, we obtain an RRR-m score for each menu
item and an RNQ score for each restaurant brand, which we call
the RNQ-GT. We model the linear correlation between the RRR-m
score and the RRR-GT score at the menu-item and restaurant brand
level.

3 RESULTS
3.1 Ground truth analysis
We present the results of the ground truth analysis on the Nutri-
tionix dataset, first at themenu-item level, and then at the restaurant
brand level for which the measure is designed to be used.

3.1.1 Menu-item level nutritional scoring. Table 1 illustrates effec-
tive and ineffective menu item matches between the Nutritionix
ground truth dataset and the USDA database. It presents the three
menu items with the lowest error and the highest error between
the RRR-m score calculated on the estimated nutrient values and
ground truth nutrient values. Error is calculated as the ratio of the
difference between the estimated and ground-truth RRR-m over
the ground truth RRR-m. Low error menu item scores are achieved
with matches to exact phrases, such as the exact match on the menu
item ‘peanut noodles’, or matches between sets of items with simi-
lar nutrient profiles, like the match between the Nutritionix menu
item ‘Mrs. Fields Cookies, Semi-Sweet Chocolate’ and various Mrs.
Fields cookie products that have a similar composition of sugar
and saturated fat. Low error menu item RRR scores may also be
achieved by averaging the nutrient values over multiple menu items
matching different substrings. For example, the target item ‘Double
Smoked Cheddar Cheese Slider’ from the Nutritionix database does
not find an exact match in the USDA database, but find matches
to items in the USDA database including the substrings ‘Double
Smoked’, ‘Cheddar Cheese’, and ‘Cheddar Slider’; averaging across
these items converges on an accurate RRR-m score.

Food items such as “French Lentil & Kale Large”, “Crisp Pinto
Bean Burrito”, “Spanish Rice” show the highest errors using our
approach. We observe that good matches on language are not suffi-
cient for determining a good match to the actual food item. A food
item matched on a substring may have fewer ingredients than the
target food, as in the target item ‘Crisp Pinto Bean Burrito’ matched
to the single ingredient ‘Pinto Beans’ in the USDA database. The
matched item can also have more ingredients, as in the target item
“French Lentil & Kale Large” matched to a French lentil and kale
soup dish, and a French lentil, kale, and potato dish in the USDA
database. In addition, because menu item descriptions do not com-
prehensively list out all ingredients, a menu item with the same
name may be prepared with multiple variations of ingredients at
different restaurants, such as ‘burger’.

Fig 1 shows the correlation between the menu item level RRR-
m scores calculated using ground truth nutrient values and the
estimated nutrient values. Our approach demonstrates an approx-
imately 50% (Pearson R=0.51) agreement with validation data in
identifying menu items.

3.1.2 Restaurant brand-level nutritional scoring. Fig 2 shows the
correlation between restaurant brand-level RNQ scores utilizing
the ground truth vs. the estimated nutrient values. The estimated
and ground-truth RNQ scores are positively correlated with a Pear-
son correlation coefficient of 0.83, with statistical significance. This
result suggests that while our method may not be sufficiently accu-
rate at scoring the nutrition of individual menu items, by taking the
median over all menu items in a restaurant brand, we can achieve
a reasonably accurate restaurant brand-level score.

Fig 3 shows histograms of the distribution of the RNQ scores
across the 522 Nutritionix restaurant brands calculated on the
ground truth and estimated nutrient values. To quantify the similar-
ity between the distributions we measure the Kullback-Liebler Di-
vergence (KLD), and compare it with the KLD between the ground
truth distribution and the uniform distribution. The KLD between
the ground truth and estimated values is 0.01, whereas the KLD
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Low Error High Error
Original item name Matched item names RRR score, ground truth RRR score, estimated Original item name Matched item names RRR score, ground truth RRR score, estimated

Mrs. Fields Cookies, Semi-Sweet Chocolate

[’MRS. FIELDS, COOKIE’,
’MRS. FIELDS, CHOCOLATE CHIP COOKIES’,
’MRS. FIELDS FROZEN VANILLA
DAIRY DESSERT BETWEEN TWO
MRS. FIELDS CHOCOLATE CHIP
COOKIES SANDWICHES, MRS. FIELDS’,
’MRS. FIELDS, BUTTER PECAN PRALINE COOKIES’,
’MRS. FIELDS, COOKIES, OATMEAL RAISIN WITH WALNUTS’,
’MRS. FIELDS, CHOCOLATE CUPCAKES’,
’MRS. FIELDS, COOKIES, SEMI-SWEET CHOCOLATE CHIP’]

0.23 0.23 French Lentil & Kale Large

[’FRENCH LENTILS’,
’FRENCH LENTILS ORGANIC SOUP,
’KALE & LENTIL SOUP’,
’LENTIL, POTATO & KALE
ORGANIC SOUP, LENTIL, POTATO & KALE’,
’FRENCH LENTIL SOUP’,
’ZIYAD, LARGE WHOLE LENTILS’]

1.36 12.55

Double Smoked Cheddar Cheese Slider

[’DOUBLE SMOKED CHEDDAR CHEESE’,
’TURKEY & SMOKED CHEDDAR SLIDERS’,
’SMOKED TURKEY AND DOUBLE CHEESE FLATBREAD’,
’HONEY TURKEY & CHEDDAR CHEESE SLIDERS’,
’DOUBLE SMOKED SAUSAGES’,
’HAM & CHEDDAR SLIDERS’,
’TURKEY & CHEDDAR SLIDERS’]

0.77 0.77 Crisp Pinto Bean Burrito [’NATURAL PINTO BEAN & CHEESE BURRITO’,
’PINTO BEANS’] 1.14 10.76

Peanut Noodles [’PEANUT NOODLES’] 0.57 0.57 Spanish Rice
[’SPANISH RICE’,
’SPANISH RICE PILAF MIX,
SPANISH RICE’]

10.67 0.79

Table 1: Effective and ineffective name matches between the Nutritionix dataset and the USDA database.

Figure 1: Menu-item level correlation
between ground truth and estimated
nutritional density (RRR-m) scores.

Figure 2: Restaurant brand-level
correlation between ground truth and
estimated restaurant nutritional
quality (RNQ) scores.
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Figure 3: Overlapping histograms of the
distribution of estimated and ground truth RNQ
scores across the 522 restaurant brands.

between the ground truth distribution and the uniform distribu-
tion is 0.12, more than 10 times larger, suggesting the distributions
are closely matched. A vertical line at 𝑅𝑁𝑄 = 1 in Fig 3 indicates
whether restaurant brands serve food with a greater balance of rec-
ommended nutrients to restricted nutrients (𝑅𝑁𝑄 > 1) or a greater
balance of restricted to recommended nutrients (𝑅𝑁𝑄 < 1). The
estimated percentage of restaurant brands with a higher balance
of recommended to restricted nutrients is 37%, compared with 43%
when using the ground-truth nutrient values.

Table 2 shows restaurant brands and their menu items for the
top three highest, bottom three lowest, and median three restau-
rant brands based on their estimated RNQ scores. We observe that
restaurant brands with the highest RNQ scores feature menu items
that are not necessarily low in calories, but have a high propor-
tion of the recommended nutrients protein (from animal and plant
sources), and fiber (from whole grains and vegetables). The lowest
RNQ scores come from restaurants serving primarily “low-nutrient
energy-dense” items that are high in added sugars and saturated
fat, mostly dessert items. Middle-RNQ scores come from restaurant
brands serving more diversified menus including a mix of healthier
items items high in protein and/or fiber (wraps, salads, and bowls),
items higher in saturated fat (wrap with mayonnaise-based dress-
ings or cheese), and items high in carbohydrates but low in protein
or fiber (muffins, white rice).

3.2 Illustrative application
We now illustrate the application of the nutritional density scoring
system to characterize the variability in nutritional quality of restau-
rant brands across a food environment. Using a database of 40,000

restaurant outlets in the greater Los Angeles area (LA) and their
spatial locations obtained from Foursquare via their public API, we
match the scored Nutritionix restaurant chain brands by name to
find their locations in LA. Of the 522 chain brands in the Nutritionix
database, 174 brands are found in the Foursquare database, with
6,078 physical outlets across LA. All of these restaurant chain brands
fall within the same NAICS category of ‘limited-service restaurant’
(code 722513) [28]. In the following, we illustrate the nutritional
diversity across restaurants grouped within this category. The sub-
sample of 174 restaurant chain brands have RNQ scores ranging
from 0.15 to 2.6. We focus on the highest and lowest-scoring brands
according to their ground truth nutrient values. Specifically, we
designate the “most nutritious” brands as those with RNQ scores
greater than 1.3, representing the top 7% of the sample of 174 restau-
rant chains, and the "least nutritious” as those with RNQ scores <
0.3, representing the bottom 7% of the restaurant chain sample. No-
tably, the top 7% of restaurant brands by RNQ score represent only
92, or 1.5%, of the sample of 6,078 physical outlets. Examples include
Sweetgreen, a salad chain; Veggie Grill, which serves plant-based
salads, bowls, and sandwiches; and Rubio’s Coastal grill, which
features a seafood and vegetable-focused taco and burrito menu.
The bottom 7% of restaurant brands by RNQ score represent 357
food outlets across the LA food environment, 6% of the sample.
Examples include McDonald’s, Winchell’s doughnut house, and
Baskin-Robbins.

The map in Fig 4 shows the locations of these least and most
nutritious food outlets in the LA area, demonstrating an unbalanced
distribution. The least nutritious outlets are found everywhere, ap-
parently distributed uniformly at random. In stark contrast, the
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Highest RNQ Middle RNQ Lowest RNQ
Restaurant RNQ-USDA RNQ-GT Restaurant RNQ-USDA RNQ-GT Restaurant RNQ-USDA RNQ-GT
GRK Fresh Greek 3.51 1.56 Just Fresh 0.82 0.99 Whitey’s Ice Cream Grocery 0.23 0.24
Tzatziki Sampler with 2 whole wheat pitas 3.28 1.12 Cranberry Orange Muffin 0.45 0.35 Mint Chocolate Chip Ice Cream 0.23 0.24
Plate - Chicken with whole wheat pita 3.51 1.82 Western Omelet 0.50 1.09 Mississippi Mud 0.30 0.18
Chicken Soup with whole wheat pita 3.46 1.85 Small Caesar Salad 0.82 0.55 Ice Cream, Swiss Almond Chocolate 0.21 0.24
Pita Yeero - Lamb & Beef whole wheat pita 3.51 1.86 Huevos Wrap 0.91 0.99 Ice Cream, Moose Tracks 0.21 0.22
Pita Yeero - Chicken with whole wheat pita 3.51 1.91 Santa Fe Chicken 1.01 1.84 Chocolate Chip Ice Cream 0.19 0.23
Protein House 3.33 1.71 Crazy Bowls & Wraps 1.20 1.73 Good Times Burgers & Frozen Custard 0.26 0.25
Chicken Caesar Wrap 1.22 1.70 Caesar Wrap 1.22 1.59 Big Daddy Bacon Cheeseburger 0.86 0.98
Southwest Veggie Wrap 1.44 1.58 Crispy Chicken Bites 1.25 1.66 Breakfast Burrito 0.87 0.63
Portobello Sandwich with Toasted Ezekiel Bread 3.33 3.60 Pesto Bowl 1.08 1.80 Chocolate Peanut Butter Crunch Spoonbender, Medium 1.36 0.25
Power Wrap 4.32 1.71 Lobster Rangoon 0.71 0.45 Onion Rings 0.58 0.57
Thai Monster Bowl with Whole Wheat Pasta 5.30 3.10 Thai Wrap 1.08 1.80 Mac & Cheese with Green Chile 0.70 0.83
Veggie Patch 2.62 2.47 District Taco 1.04 1.44 Dunkin’ Donuts 0.29 0.41
Garden Broccoli Bites 2.31 1.66 Garlic-Lime Rice 0.66 0.64 Chocolate Chip Muffin 0.28 0.28
Crispy Chik’n Cutlet, Meatless 2.61 2.63 Huevos Rancheros 0.88 1.17 Maple Creme Donut 0.47 0.34
Falafel Chickpea Balls 2.63 2.47 Quesadilla - Chicken 1.22 1.50 English Muffin 1.85 1.50
Chik’n Bites, Buffalo 2.76 2.45 Burrito Mojado - Chicken 1.67 1.38 Vanilla Creme Donut 0.16 0.32
Classic Falafel, Chickpeas & Spices 2.96 2.47 Vegetarian Black Beans & Rice 2.72 2.80 Apple Crumb Donut 0.25 0.37

Table 2: Top 3 restaurants with the highest, middle, and lowest estimated RNQ score according to estimated nutrient values.
The table shows the RNQ score based on estimated nutrient values (RNQ-USDA) and ground truth nutrient values (RNQ-GT)
for a sample of 5 menu items per restaurant.

most nutritious outlets are not uniformly distributed but are clus-
tered in specific neighborhoods; in particular, the affluent west to
east corridor in the north of the LA area between Santa Monica,
Beverly Hills, and downtown Los Angeles.

Figure 4: Map of the greater Los Angeles area indicating locations
of most nutritious (green, 𝑅𝑁𝑄 > 1.3) and least nutritious (red,
𝑅𝑁𝑄 < 0.3) restaurant outlets scored from the Nutritionix dataset

4 DISCUSSION
In public health nutrition research, individuals’ access and exposure
to healthy and unhealthy food environments, and the effect on the
healthiness of their food choices, is a major area of research that
informs public health policy. The most commonly used indicators
of food environment nutritional quality are based on the presence
or absence of entire categories of food outlets, e.g. food deserts and
supermarkets, or food swamps and fast-food. This work is the first
to introduce an index of restaurant nutritional quality that exists
along a continuum, that is also deployable at scale across food
environments. We use a large ground truth dataset consisting of
menus items and corresponding nutrient information for over 500
restaurant chain brands from the personal nutrition software com-
pany Nutritionix to validate the approach, obtaining a restaurant
nutritional quality (RNQ) score for each restaurant, and comparing
the estimated scores to scores calculated using the ground truth
nutrient profile information. While the approach does not return

reliable matches at the menu-item level, at the restaurant level it
is designed for, the approach achieves a reasonably accurate cor-
relation of 0.83 between estimated and ground truth values due to
laws of averages.

In an illustrative example, we apply the RNQ scoring measure to
the restaurant chain brand restaurants included in the Nutritionix
dataset to find their spatial placement across the food environment
of the greater Los Angeles area. The example demonstrates the value
of moving beyond the use of single-category indices to characterize
the healthiness of the food environment, to quantifying the range of
nutritional options available. First, a wide distribution of nutritional
densities is demonstrated across restaurants categorized under the
single category of ‘limited service’ restaurant (NAICS code 722513),
a business listing code often used to define ‘fast-food’ outlets. When
the RNQ scoring indicator is applied beyond the Nutritionix dataset,
the distribution of nutritional density scores will likely become even
wider. Second, analysis of the placement of the physical outlets of
these restaurant chain brands across the LA food environment
demonstrates clear patterns of disparity in access to nutritious
food environments. Restaurant outlets on the more nutritious end
of the spectrum are closely clustered in specific neighborhoods,
while over-saturation of outlets on the least nutritious end of the
spectrum appears to be a homogeneous phenomenon.

The measure comes at a time when the need for a continuous
indicator of food outlet and environment quality is in high demand,
as data capture on individual-level exposure to food environments
is becoming increasingly used in both small-sample nutrition stud-
ies and population-wide analyses. Access to a fine-grained measure
that can quantitatively characterize specific types of food environ-
ment, at scale across study populations, can transform the way we
measure and characterise exposures and access to specific nutrients.

In ongoing work we are using the restaurant-level indicator as
the basis for an indicator of the nutritional quality of neighborhood
food environments. This requires obtaining a dataset of menus from
restaurants across the food environment; we are currently seeking
menu data for this purpose from Yelp’s API. Future analyses will
seek to compare the continuous indicator of food environment nu-
tritional quality to commonly-used indicators including food desert
and food swamp status, in their relationship to socio-demographics
and diet-related health outcomes.
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