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a b s t r a c t 

In today’s increasingly interconnected world, outbreaks of disease or contamination can spread widely 

and cause considerable impact on public health. Proactively assessing the ability to identify the source 

of an outbreak in a networked system is a critical step in aiding emergency and operational prepared- 

ness management prior to a crisis situation. While many methods have been developed to identify the 

source of an outbreak once it has occurred, limited research has been devoted to developing measures to 

assess the overall ability of a network structure to support accurate source identification, which we call 

traceability . Furthermore, while significant work has focused on understanding the role of network struc- 

ture on propagation dynamics, its impact on traceability has yet remained unstudied. Here, we introduce 

a novel, comprehensive measure of network traceability, which calculates the information-theoretic en- 

tropy of the posterior probability distribution over feasible sources resulting from inferring the source 

location. By capturing information about the full posterior probability distribution, this measure presents 

an improvement over the binary logical outcome of the prediction accuracy metric generally applied to 

assess source identification method performance. Using food supply chain networks as an example, we 

use this measure to provide the first study systematically evaluating the role of network structural pa- 

rameters on traceability, comparing both synthetic networks generated to exhibit a range of structural 

features known to be relevant to contamination propagation and real networks representing the Chinese 

pork supply chain across various cities. This analysis yields insights about the relationship between trace- 

ability and network structure, some counter-intuitive, and more generally, illustrates how this measure 

can be used in emergency and operational preparedness to proactively assess network traceability and 

recommend strategies for its improvement. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

An important problem for the management and regulation of

etworked systems involving spreading processes is improving the

bility to trace the source of a spreading agent. This ability is

f particular importance for both public health management and

mergency preparedness in diverse contexts; if at the onset of a

arge-scale outbreak the contamination origin or source is identi-

ed efficiently, damage can be prevented or reduced [1–4] . How-

ver, the ability to identify the source of an outbreak, which in this

aper we refer to as traceability , can vary extensively for different
✩ This manuscript was processed by Associate Editor Campbell. 
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etworked structures and spreading processes. Proactively assess-

ng network structural traceability can aid emergency and opera-

ional preparedness management on the need and allocation of re-

ources to improve traceability. 

In recent years much work has emerged on the problem of

dentifying the source of outbreaks spreading in a network. Ap-

roaches have been developed in the context of epidemic-type

ontagion processes including infectious disease outbreaks in

uman contact networks [5–7] or rumors spreading in social net-

orks [8–10] , and in transport-mediated diffusion-type processes

uch as diseases spread through water networks [11] and global

ir travel [12] , or foodborne disease contamination spread through

ood distribution networks [13] . While the problem context and

ethodological approach vary, the general objective of the net-

ork source location problem is to rank all possible source nodes

ccording to their relative likelihood of being the outbreak source,
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given available knowledge of the underlying network structure

and the location (and in some cases the timing) of the reports

of contamination at observing nodes. An intuitive framing of this

problem, and that taken by the majority of the existing methods,

is to invoke a probabilistic inference approach that determines a

posterior probability that each possible source is the true source,

and with it a maximum likelihood estimate of the true source

location [6–8,11,13] . For a review of network source identification

approaches classified by methodological approach, see [13] . 

Despite the substantial stream of work on the source location

problem, limited research efforts have focused on developing

quantitative measures of the overall ability of a network structure

to support accurate source identification, i.e. traceability . When

characterizing the accuracy of a proposed algorithm to identify the

source of an outbreak of contamination or contagion on a specific

network structure, the majority of the methods reviewed above

report one of two metrics: mean prediction accuracy, based on the

binary outcome of identifying the source in e.g. the first position

or top-ten positions; or mean prediction rank, the position of

the true source in the ordered ranking over all possible sources;

both averaged over a large number of simulated outbreaks. These

accuracy metrics can be seen as the closest proxy to a quantitative

measure of traceability in the existing literature. However when it

comes to measuring the ability of a network structure to support

accurate source identification, these accuracy metrics are subopti-

mal: relying on either a binary outcome or a single value (the rank

of the true source), they do not take into account the rest of the

information from the resulting posterior probability distribution

over possible sources. 

Furthermore, while the traceability of various network topolo-

gies has been investigated in order to demonstrate the robustness

of an algorithm to differences in network structure, no research

has contributed a systematic study of the role of network struc-

tural parameters in determining traceability. This is in spite of the

well-established fact that network structure is a key determinant

in spreading dynamics [14–16] , with much research having focused

on understanding how the properties of the underlying network

shape the size and dynamics of potential spreading events. The

seminal works in this area considered how spreading dynamics

are shaped by the structural properties of stylized networks such

as small-world , characterized by the property of high clustering

and short average path lengths between any two nodes [17] ,

and scale-free , characterized by the heterogeneous distribution of

connectivity to other nodes [18,19] . The influence of network struc-

tural properties such as degree heterogeneity, betweenness, degree

density, weight distribution, and others on outbreak spreading

characteristics have since been studied extensively over the past

decade [20–23] . More recently, this approach has been applied

in the context of commodity or livestock trade with the aim of

assessing how network topology mediates the dynamics and size

of an outbreak of deliberate or unintentional contamination. Such

work has investigated the role of heterogeneity in degree distri-

bution, degree density, directionality, and modularity in swine and

cattle trade networks [24–26] and the milk supply chain [27] , and

degree of overlap or mixing in the food production supply chain

[28,29] . 

Network structure should likewise be a determining factor

in backward tracing. In the case of food distribution, one can

easily imagine that for a supply network composed of vertically

integrated supply chains, any observation of contamination can

be correctly traced back to the original source [30] . On the other

hand, if there are a lot of cross distribution links among entities

in the chain, the uncertainties of source contamination can be

extremely complex. As the number of links increase, the number

of pathways along which the contamination could travel will

increase, and the predictability decreases. Each network structural
ariable may influence traceability in a particular way, which may

hange when taken together with other variables, allowing for

actorial combinations. 

.1. Approach and contributions 

Studying the role of network structural parameters on trace-

bility has important practical implications for emergency and

perational preparedness, helping to develop an understanding

f how and in what situations it might be possible to accurately

dentify an outbreak source. Being able to forecast where will be

ore difficult can inform the proactive allocation of resources to

mprove network structural traceability. A systematic study of how

ifferences in network structure impact this ability may therefore

e of value to governmental agencies and regulatory bodies (e.g.,

he CDC, DOD, FDA, USDA) who may have influence on network

esign through regulations; or to industry groups who can take

rivate market initiatives to adapt or influence network structure.

hile this is an important area of research, our review has not

dentified any studies that systematically explore the role of

etwork structural properties in determining the ability to identify

he source of spreading phenomena for complex networks. 

This paper aims to address two gaps in the network source

dentification literature by (i) defining a novel, comprehensive

easure for the traceability of a network structure, and (ii) using

his measure to produce the first study that systematically eval-

ates the effect of network structural parameters on traceability.

hile the traceability measure itself is general and can be ex-

ended to any network source identification setting where a prob-

bility distribution is generated, we illustrate it here using the case

f foodborne disease and food distribution networks. First we de-

elop a stylized model of the food supply chain, a three-layered

arm-Distributor-Retailer model, and a food flow and mixing

odel. To estimate the source of an outbreak on this network, we

dopt a Bayesian probabilistic inference approach, using the food

ow and mixing model to identify the posterior probability distri-

ution of any feasible source node being the true source in a man-

er similar to Horn and Friedrich [13] . Our contribution is then to

efine a measure of network traceability, the ability of a network

tructure to facilitate identification of the source, in a way that

aptures all information from the posterior probability distribution

ver all possible sources. This novel approach, network traceability

ntropy (NTE), calculates the information-theoretic entropy of the

osterior probability distribution over possible sources, averaged

ver combinations of observed contaminated nodes. NTE thereby

aptures the full information provided by the differing probabili-

ies while still generating a single output score for the ability of a

etwork structure to support accurate source identification. 

Entropy in information theory is a measure of the amount of

nformation – or equivalently, the amount of uncertainty or unpre-

ictability – carried by a random variable [31] , in this case, the

osterior probability distribution representing an estimate of the

ource location. While originally developed in communication the-

ry to measure the how much useful information a message is ex-

ected to contain, the information-theoretic definition of entropy

as, almost since its inception, been applied as a measure of sys-

em uncertainty, information, or predictability in many other fields

uch as in physics, mathematics, and statistics, as well as in com-

lex system analysis in various domains from biology [32–34] to

inguistics [35] to studies of human mobility [36–38] . It is thus par-

icularly well suited to the task of measuring network traceability,

ince in this case it is calculated over the posterior probability dis-

ribution over possible sources and is measuring the predictability

n identifying the true source. 

By summarizing information about the full probability distribu-

ion over feasible sources into a single score, this measure presents
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Fig. 1. The Farm-Distributor-Retailer food supply network model. 
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n improvement over the existing simulation accuracy or rank

etrics that are based on a binary outcome or single rank value,

hile being just as convenient. In this paper we demonstrate the

mprovement, first comparing to the simpler simulation predictive

ccuracy metric and showing results are not 1-1. We also provide

 simple comparative example to illustrate that there is more in-

ormation captured in the entropy-defined measure than the bi-

ary predictive accuracy measure. A more comprehensive metric

or network traceability can better inform policies to improve net-

ork traceability. 

We then go on to use this measure to provide the first sys-

ematic comparison of network structures on their traceability. We

dentify a few network structural features that are important to

pread and should likewise be important to traceability – link den-

ity, connective heterogeneity, and community structure. We pa-

ameterize these features and simulate network structures across a

ange of parameter values, then use NTE to draw conclusions about

he role of network configurations on traceability. This comparative

nalysis using simulated network structures allows us to draw the-

retical conclusions about the role of these specific network fea-

ures on traceability. We then demonstrate the practical relevance

f traceability analyses by including a case study based on data

rom China’s new product tracing program, the “National Impor-

ant Product Traceability System”. We use this dataset to compare

ork supply chain networks across 10 Chinese cities, and discuss

ow NTE might be used to recommend strategies for improving

raceability in this industry. 

Finally, we emphasize that in this paper we define the term

raceability as a measure of the ability to identify the source of a

preading event in a network. This is a precise, quantitative def-

nition of a network-theoretic measure. We acknowledge that the

erm has many uses and has received many definitions in the food

afety, supply chain, technology development and regulatory liter-

ture. For a review of existing definitions of traceability and usage

n technology development, see the Supporting Information. 

.2. Outline 

The remainder of the paper is organized as follows. In Section 2 ,

e define the food supply network and contaminations spread-

ng models and define NTE, the measure of network traceability.

n Section 3 , we introduce the simulation setup and define Predic-

ion Accuracy, a simulation-driven score of the accuracy of a iden-

ifying outbreak sources based on the binary accuracy metric used

n the existing literature. In Section 4 , we provide an illustrative

xample demonstrating how NTE efficiently encodes and transmits

nformation regarding the uncertainty of the source identification

roblem. We compare NTE to the Prediction Accuracy measure as

oted above. We then demonstrate how traceability entropy can be

sed to compare between various network configurations catego-

ized by their link density, connective heterogeneity, and commu-

ity structure. In Section 5 we apply the measure to network data

n the pork supply chain in China. We discuss how NTE might be

sed to recommend strategies for improving traceability in this in-

ustry. Section 6 presents the conclusions drawn from our results

nd identifies extensions and future work. 

. Defining network traceability using entropy 

.1. Food supply network model 

The food supply chain is composed of a wide diversity of prod-

cts and companies which operate in different markets and sell

 variety of food products. Here we will use a modeling frame-

ork that represents the network of distribution for a single com-

odity, such as spinach, but that can be generalized to any com-
odity. The steps encountered between production and consump-

ion can vary considerably between food commodities as product

oves through growers, processors, packagers, brokers, distribu-

ors, wholesalers, retailers, restaurants, etc. In order to use a model

hat is representative of the food supply chain in general, we ag-

regate the underlying trade network into the categories of farms,

istributors, and retailers ( Fig. 1 ). In this simplified supply net-

ork, G , food is produced by each farm F i , 1 ≤ i ≤ | F |, transported

o different distributors D j , 1 ≤ j ≤ | D |, mixed with food from other

arms at these distributors, and then sold to customers at retailers

 l , 1 ≤ l ≤ | R |. Extensions to the three-layered network are straight-

orward. The number of farms, distributors, and retailers are de-

oted as | F |, | D |, | R |, respectively. 

.2. Food flows and mixing 

We now define a model for food flows through the supply net-

ork. 

Let f i = x i / 
∑ | F | 

i ′ =1 
x i ′ be the proportion of food produced by farm

 i , 1 ≤ i ≤ | F | , where x i is the total amount of food produced at farm

 i . Let FD, DD, DR be the food distribution matrices between the

ayers of farms, distributors and retailers, respectively. Let the ele-

ents in each of these matrix, fd ij , dd jk , dr kl denotes the proportion

f food products sent from the source node to the receiver node.

inally, let FR be the food composition matrix in which each ele-

ent fr il is equal to the proportion of food from farm F i ending up

t retailer R l . FR can be calculated as: 

 R = F D × DD × DR. (1)

.3. Probabilistic source identification 

Given an outbreak of contamination reported at a set of retailer

odes R ∗
l 

∈ �, | �| = λ, the posterior probability that F k is the true

ource can be written as 

 ( F k | �) = 

P ( F k ) P (�| F k ) ∑ | F | 
i =1 

P ( F i ) P (�| F i ) 
, (2)

here P ( F k ) is a prior probability distribution over the k feasi-

le source farms. If we assume that any unit of food produced is

qually likely to generate contamination a priori . Then, the prior

robability that any farm node is the source is equal to the rel-

tive production quantity at each source node, such that P (F k ) =
f k , 1 ≤ k ≤ | F | . 

To determine the likelihood, we first expand P ( �| F k ) in terms of

he individual illness reports at nodes R ∗
l 

∈ �, 

 (�| F k ) = P (R 

∗
1 , R 

∗
2 , . . . , R 

∗
λ| F k ) . (3)

If we assume that each illness observation i is mutually inde-

endent of every other observation, the joint probability distribu-

ion in Eq. 3 can be factorized into a product of the individual



194 X. Lu et al. / Omega 87 (2019) 191–204 

0 50 100
0

0.1

0.2

0.3

0.4

0.5

0 50 100
0

0.1

0.2

0.3

0.4

0.5

0 50 100
0

0.1

0.2

0.3

0.4

0.5
λ =1 λ =3λ =2

P(
F k
Ω
)

|

P(
F k
Ω
)

|

P(
F k
Ω
)

|

(a) (b) (c)

farm ID farm ID farm ID
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probabilities of each reporting retailer R ∗
l 
, such that 

P (R 

∗
1 , R 

∗
2 , . . . , R 

∗
λ| F k ) (4)

= P (R 

∗
1 | F k ) P (R 

∗
2 | F k ) . . . P (R 

∗
λ| F k ) = 

∏ 

R ∗
l 
∈ �

P (R 

∗
l | F k ) . 

In practice, we can reasonably expect the condition of mutual

independence to be validated [39] . This can be understood by not-

ing that the observations of illness at nodes R i are mutually inde-

pendent if all nodes receive contaminated food from batches de-

parting separately from the source. For large contamination inci-

dents where the contaminated quantity will be larger than what

fits in one truck, this is necessarily the case. Furthermore, large-

scale outbreaks are characterized by the widespread distribution

of contaminated product throughout the supply chain resulting in

reports of contamination in disperse geographical locations [40,41] .

This dispersion implies that many more contaminated food items

leading to reports of illness at different nodes will travel in sepa-

rate batches than will travel together. 

If we assume that the probability of reporting infection is pro-

portional to the amount of contaminated food received at each re-

tailer, then given an outbreak at farm F k , the probability that re-

tailer node R ∗
l 

observes an illness is then equal to the proportion

of food produced at farm F k delivered to retailer R ∗
l 
, i.e. 

P (R 

∗
l | F k ) = f r kl , (5)

The likelihood is consequently found as the product of the pro-

portions delivered to each R ∗
l 

∈ �, 

P (�| F k ) = 

∏ 

R ∗
l 
∈ �

f r kl , (6)

And Eq. 2 becomes 

P (F k | �) = 

f k 
∏ 

R ∗
l 
∈ �

f r kl 

| F | ∑ 

i =1 

f i 
∏ 

R ∗
l 
∈ �

f r il 

. (7)

Then for each set of observations �, we obtain a list of poste-

rior probabilities: P (F 1 | �) , P (F 2 | �) , . . . , 

P (F k | �) , . . . , P (F | F | | �) which forms a distribution and fulfills

| F | ∑ 

k =1 

P (F k | �) = 1 . 

2.4. Network traceability entropy 

With the posterior probability distribution defined, we can use

the information theoretic definition of entropy as a measure of the
ncertainty in determining the source farm given an outbreak in

he node set �, 

(�) = −
| F | ∑ 

k =1 

P (F k | �) log P (F k | �) . (8)

Entropy can be seen as a measure of uncertainty about a value

ampled from a probability distribution [31,36,37] ; in this case, it

easures the uncertainty in determining the source of the out-

reak F k given the contamination set �. If we consider a game

here we are allowed to ask yes/no questions until we identify

he correct outbreak source, the entropy of the posterior proba-

ility distribution P ( F k | �) can be interpreted as the average num-

er of (suitable) yes/no questions we need to ask to pinpoint the

ource. Turning this around, 2 E is the uncertainty in the source lo-

ation, or the effective number of plausible source candidates. The

eader may wish to refer to Section 4.1 for an example illustrating

his principle. 

If we have little uncertainty about the source, then we get

o the correct answer with a few questions. An extreme case is

hen E(�) = 0 . This can happen when only one feasible source

ode F k exists, with probability P ( F k | �). In this case we do not

eed to ask any questions to get to the value of the true source.

n the other extreme, uncertainty is greatest when the amount

f food is distributed equally across all farms to all retailers, i.e.

(�) = −∑ | F | 
k =1 

1 
| F | log 1 

| F | = log | F | . These two extreme cases bound

 ( �) as 

 ≤ E(�) ≤ log | F | . (9)

Finally, we define the Network Traceability Entropy (NTE) as the

verage entropy for food supply network G given any number of

ontamination reports λ: 

 

λ = 

∑ 

�: | �| = λ
E(�) / 

(| R | 
λ

)
. (10)

Network Traceability Entropy so defined permits an intuitive def-

nition of the uncertainty of source traceback. While food distribu-

ion networks are used as the illustrative example in this paper,

he measure can apply to any problem of network source iden-

ification when a posterior probability distribution for the source

ocation can be computed given some number λ of reported cases.

. Experimental design 

We have proposed NTE as a measure of the uncertainty of accu-

ate source identification in a network, traceability . We now intro-

uce a simulation environment that we will use to evaluate the
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easure and present a systematic study of the role of network

tructure on traceability. 

.1. Network configuration 

We adopt a few key structural features to generate a spectrum

f networks across varying parameters ( Table 2 ). First, to approx-

mate the relative size of food supply network actors, we fix the

umber of farms, distributors, and retailers at | F | = 100 , | D | = 20

nd | R | = 500 , respectively. Let d̄ out 
F 

, d̄ in 
F D 

, d̄ out 
DR 

, and d̄ in 
R 

denote the

verage outdegree of farms, average indegree from farms to dis-

ributors, average outdegree from distributors to retailers, and av-

rage indegree of retailers from distributors, respectively. Based on

 ̄

out 
F 

, d̄ in 
F D 

, d̄ out 
DR 

, and d̄ in 
R 

, we generate sets of degrees d drawn from

ertain probability distributions. We then randomly pair links be-

ween related layers according to the Network Configuration Model

42] . In the following studies we fix the degree distributions to be

niform ( d ∼ U(1 , 2 ̄d − 1) ), binomial ( d ∼ B ( d max , d̄ / d max )) ), or ex-

onential ( d ∼ Exp( ̄d ) ), and vary the density of connections d̄ out 
F 

nd d̄ out 
DR 

from low : d̄ out 
F 

= 2 , d̄ out 
DR 

= 30 ; medium : d̄ out 
F 

= 3 , d̄ out 
DR 

= 40 ;

o high : d̄ out 
F 

= 4 , d̄ out 
DR 

= 80 . We choose these values because they

re representative of real food supply networks, as can be seen by

omparison to the 10 real networks from the case study analysis

n Section 5 (see Table 2 ). 

Unless otherwise stated, we assume all farms produce a unit

mount of food and for each link food is distributed evenly among

ll outgoing links of an actor. For the purpose of this study, we

onsider only links between farms and distributors, and distrib-

tors and retailers. It is straightforward to extend the approach

emonstrated to networks with more complicated interactions. 

.2. Simulation setup 

With the above specifications, we generate networks for each of

he low, medium and high settings, with degree distributions con-

gured from uniform, binomial and exponential distributions. For

ach density and degree distribution setting we generate 10 0 0 net-

orks randomly, for a total of 90 0 0 networks. The NTE, E λ, is cal-

ulated for each network according to Eq. 10 . 

.3. Prediction accuracy benchmark 

The closest proxy to a quantitative measure of traceability in

he existing literature is the standard predictive accuracy metric

sed to assess the mean source identification algorithmic perfor-

ance for a given network structure: an outbreak is simulated, the

ource identification algorithm is applied, and a binary logical out-

ome recorded representing whether the simulated source is iden-

ified. When this accuracy metric is averaged over a large number

f simulated outbreaks for a given network structure, this can be

onsidered a measure of network traceability. Here we formally de-

ne such a measure, prediction accuracy , 〈 γ ( g ) 〉 , in order to provide

 benchmark of the state-of-the-art measure of network traceabil-

ty, which we will use to make comparisons with NTE . 

Spreading scenarios are generated through Monte Carlo simula-

ion. First, a farm F s is randomly chosen as the source of contam-

nation and the subset, �, of all retailers that can be reached by

his farm is determined. We assume that only a subset of retail-

rs in � actually present with the contamination, a result of the

ontamination being passed between links with a probability less

han one, as well as example-specific factors such as underreport-

ng of illness. This subset, �, is sampled in proportion to the food

omposition fr si received at each retailer R i reached by the source

arm. The probability that a farm F k is the outbreak source given

he reports of illness at retailers R ∈ � can then be determined by
i 
pplying the source estimator in Eq. (7) . To compute the predic-

ion accuracy for a given network, we simulate 10 0 0 iterations of

he infection and prediction process. For each iteration we allow

 variable number of guesses, g , for the source farm, assigning a

 if the outbreak source F s is within the top g farms with highest

robability values and a 0 if it is not. 〈 γ ( g ) 〉 is calculated as the

raction of correct predictions. 

. Results 

.1. An illustration of the calculation of NTE 

In this section we apply NTE to a specific outbreak example to

elp establish the reader’s practical understanding of the measure.

he example furthermore illustrates, explicitly, how traceability en-

ropy effectively encodes information about the uncertainty of the

ource identification problem. 

Fig. 2 plots the probability distribution P ( F k | �) for the outbreak

ource farm resulting from a contamination event given | �| = 1 , 2,

nd 3 reports of illness. The probability values are ordered by their

rbitrary numerical identifier, i.e. farm ID . The example is simu-

ated on a network in which all degree distributions are binomial,

 ∼ B (d max , 
d̄ 

d max 
) , and the density of connections are medium , i.e.

 ̄

out 
F 

= 3 and d̄ out 
DR 

= 40 . For reference, the outbreak in this simula-

ion was generated from farm ID 21 . 

The example in Fig. 2 demonstrates expected behavior: as the

umber of observations of illness increase, the uncertainty in iden-

ifying the source farm will decrease. This is due to two impor-

ant factors: fewer sources are possible options, and, fewer sources

robable . First, additional observations will rule out farms that are

nable to reach all retailers in the observation set. In the exam-

le we see that the number of feasible farms, or farms with a

onzero probability, decreases from 26 to 22 as the reports in-

rease from | �| = 1 to | �| = 3 . Second, the probability values dis-

ributed across the farms will become more pronounced as the

umber of terms in the product forming the likelihood function

ncrease. This differentiation of probability values is clearly visible

s the number of reports increase over the 3 plots in Fig. 2 , with

he low values becoming lower while the high probability values

row higher. This is especially noticeable for the maximum proba-

ility values, the true source at farm ID 21 . 

While the probability distribution across all feasible sources is

ecessary to fully characterize the uncertainty in the source iden-

ification problem, we now show how the traceability entropy ef-

ciently encodes and transmits information about this uncertainty.

lthough we do not have an intuitive understanding of the mean-

ng of the entropy score itself, the reverse value of 2 E , as dis-

ussed in previously, has a practical meaning we can understand:

t represents the uncertainty in the source location, or the effec-

ive number of feasible sources. This can be reflected in what we

ee in the distributions plotted in Fig. 2 . Table 1 summarizes the

ntropy score, the number of feasible source candidates, and the

ffective number of feasible source candidates for the 3 scenarios

n the example. When | �| = 2 , the number of feasible farms is 24

hile the effective number is 2 E = 9 . 1 , which corresponds roughly

o the 8 farms in Fig. 2 (b) with significant probability values, e.g.,

 (F k | | �| = 2) > 0 . 05 . When | �| = 3 , the number of feasible farms

as decreased only by 2, but the effective number of feasible farms

as decreased to 2 E = 6 , which corresponds exactly to the 6 farms

ith significant probability values. While not every calculation of

 

E will correspond so precisely to the effective number of feasi-

le farms, this example functions to demonstrate the useful rela-

ionship between entropy and uncertainty in the source detection

roblem. 
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Table 1 

Illustrative calculations for the examples presented in Fig. 2 . 

#. observations Entropy #.feasible source effective #. feasible sources #. farms with 

| �| E ( �) 2 E P(F k | | �| = 2) > 0 . 05 

1 3.9 24 14.6 13 

2 3.2 23 9.1 8 

3 2.6 22 6.0 6 

Table 2 

Summary of network parameters used in stylized networks and observed in 

pork supply chain data from the NIPTS for ten piloting cities in China. 

Stylized Networks | F | | D | | R | d̄ out 
F d̄ in FD d̄ out 

DR d̄ in DR 

Low 100 20 500 2.0 10.0 30.0 1.2 

Medium 100 20 500 3.0 15.0 40.0 1.2 

High 100 20 500 4.0 20.0 80.0 3.2 

City 

Ningbo (NB) 185 13 1263 1.9 26.5 99.7 1.0 

Hangzhou (HZ) 379 9 228 2.2 92.8 25.3 1.0 

Chengdu (CD) 312 56 4467 2.8 15.7 585.1 7.3 

Chongqing (CQ) 461 14 2827 2.3 76.3 213.3 1.1 

Kunming (KM) 25 3 7 1.0 8.3 3.0 1.3 

Wuxi (WX) 251 2 222 1.3 157.5 113.0 1.0 

Shanghai (SH) 93 10 4472 2.0 18.5 449.4 1.0 

Qingdao (QD) 72 15 85 2.5 11.8 5.9 1.1 

Nanjing (NJ) 232 12 2350 1.9 36.5 234.1 1.2 

Dalian (DN) 37 2 30 1.5 28.5 15.0 1.0 

Fig. 3. Illustration of traceability entropy E 1 , E 2 and E 3 for a network in which all 

degree distributions are binomial, d ∼ B (d max , 
d̄ 

d max 
) , and the density of connections 

are medium , i.e. d̄ out 
F = 3 and d̄ out 

DR = 40 . Results are averaged across 100 simulated 

network structures with the error bar designating one standard deviation from the 

mean. 
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To take this example one step further, in Fig. 3 we show sim-

ulation results for E 1 , E 2 and E 3 for the same network setup. The

E λ results are averaged across 100 simulated network structures

with the error bar designating one standard deviation from the

mean. We observe that E 1 is around 4.1, indicating that on aver-

age for this network, the effective number of feasible contamination

sources is 2 4 . 1 = 17 . 1 farms after one illness has been observed.

Increasing the number of observations greatly reduces the uncer-

tainty in this network: when two illnesses have been observed,
he effective number of feasible sources reduces from 17.1 to 2 2 = 4

arms; with three observations, it reduces to 2 0 . 6 = 1 . 5 , fewer than

wo farms. 

.2. Noting the difference between NTE and prediction accuracy 

We now provide a simple example to illustrate how NTE cap-

ures more information than the binary prediction accuracy met-

ic defined in Section 3.3 , which can be seen as the state-of-the-

rt measure of network traceability. Imagine a scenario involv-

ng two networks, A and B , each with three farms and one re-

ailer. Given a contamination observed at the retailer in each net-

ork, let’s suppose that the probability of identifying the source is

ound to be equal to the distribution P A (F | �) = { 0 . 5 , 0 . 49 , 0 . 01 }
or A and P B (F | �) = { 0 . 5 , 0 . 25 , 0 . 25 } for B . The NTE for A and

 in this scenario are E 1 
A 

= 0 . 7422 and E 1 
B 

= 1 . 0397 , which indi-

ates that the ability to identify the source of outbreaks in net-

ork A is more predictable, or that network A encodes less uncer-

ainty, than network B . However, if we apply the prediction accu-

acy metric with g = 1 , we can see that the prediction rate would

e 〈 γA (g) 〉 = 〈 γB (g) 〉 = 0 . 5 ; that’s to say, if we use prediction accu-

acy to measure the ability of tracing, the two networks becomes

ndistinguishable. 

.3. Correlation between NTE and prediction accuracy 

In this section we quantify the correlation between the

ntropy-based measure and the prediction accuracy metric,

emonstrating that the measures are not identical. As demon-

trated in the examples above, NTE is calculated based on the full

osterior probability distribution over all sources, encoding more

nformation than the binary prediction accuracy metric. 

To compare NTE and the prediction accuracy, we compute both

easures in parallel for each of the 90 0 0 networks generated for

valuation. Fig. 4 presents the results, demonstrating a strong cor-

elation between the NTE E λ and the prediction Accuracy 〈 γ ( g ) 〉 .
s expected, the accuracy of identifying the source of simulated

utbreaks decreases as NTE increases. With one guess, predic-

ion accuracy is a monotonically decreasing function of NTE with

trong correlation; the Pearson correlation coefficient for both λ =
 ( Fig. 4 (a)) and λ = 2 ( Fig. 4 (c)) is as high as -0.97 (significance

p < . 0 0 0 ). Prediction accuracy clearly increases with the number

f guesses, i.e., the more farms that can be investigated, the more

ikely it is to find the correct contamination source. For these styl-

zed networks, when g = 10 and λ = 1 , there is a 60% ∼ 70% chance

f finding the source for networks with low NTE ( E 1 < 3), while

he likelihood remains low (30% ∼ 40%) for networks with high NTE

 E 1 > 4). 

Still, there are areas where the correlation between NTE and the

rediction Accuracy is not monotonic, which is attributable to the

ifferences in the two measures as discussed above. 

.4. Effect of network structure on traceability 

In this section we use Network Traceability Entropy to facilitate

omparisons between the traceability of different network config-

rations. Food distribution networks are characterized by multiple
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Fig. 4. Prediction accuracy 〈 γ ( g ) 〉 for different numbers of guesses g as a function of Network Traceability Entropy E λ , based on outbreaks observed in one retailer (a-b) and 

two retailers (c-d). In (a) and (c), the prediction accuracy 〈 γ (1) 〉 for g = 1 guess for the source farm is highlighted. In (b) and (d), intermediate curves represent the number 

of guesses g from 2 to 9. 
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T  
tructural features, which may exert a distinct influence on trace-

bility either independently or in combination. We apply the mea-

ure to evaluate the role of several structural parameters on trace-

bility: degree density, degree heterogeneity, and regional struc-

ure. 

.4.1. Network density and degree distribution 

The density and the heterogeneity of connections between

arms, distributors and retailers are two major factors affecting

raceability. High link density means more pathways for dissem-

nating the contamination; the number of pathways along which

he contamination could travel will increase, and the predictabil-

ty decreases. Furthermore, the distribution of the degrees sup-

lies relevant information about the structure of a network and

lso about food safety. Food distribution networks are character-

zed by heterogeneity in (i) the distribution of the number of links

n or out of each node across all nodes in a stage, or the in- or

ut-degree distributions, respectively; (ii) the distribution of flow

olumes across the links leaving a single node; and (iii) the ini-

ial volume distribution across producing nodes at the first stage.

his behavior has been observed in network studies documenting

upply chain structure [27,43–45] , and moreover is characteristic of

omplex networks in general [12,46] . 

To investigate the role of degree density and heterogeneity on

TE , we generate networks for each of the low, medium and high

egree density settings with degrees configured according to uni-

orm, binomial and exponential distributions, for a total of nine

eparate network settings. The NTE scores E 1 and E 2 are then cal-

ulated as the average over 100 randomly generated networks for

ach density and degree setting. 

The results demonstrate that NTE follows expected properties,

eflecting changes in the traceability resulting from variations in

etwork complexity ( Fig. 5 ). First, we observe that NTE visibly in-

reases with network density for both one and two observations.

his follows our expectations, since greater connectivity means

ore paths for the contamination to have traveled, more farms

o be feasible sources, and correspondingly more uncertainty in

ackward tracing. For example, when all degrees are drawn from

 binomial distribution and with two observations, the traceabil-

ty entropy increases from 0.5 when the network is sparse ( low ),

o 3 when the network becomes dense ( high ). These values cor-
espond to an increase in the effective number of feasible sources

f 2 0 . 5 = 1 . 4 for the sparse configuration and 2 3 = 8 for the dense

onfiguration, corresponding to a decrease in the ability to accu-

ately pinpoint the source. 

Second, with regard to the effect of the degree distribution

eterogeneity, we observe that NTE scores for networks gener-

ted from a binomial distribution are higher than for those gener-

ted from uniform and exponential distributions. Values sampled

rom a binomial distribution will be focused around a mean value

hereas values sampled from uniform and exponential distribu-

ions will be more heterogeneously distributed. As a result, the

mount of food will be more evenly distributed between farms

nd retailers in the binomial networks. The evenly spread distri-

ution of food corresponds to less probabilistic distinguishability

etween pathways the contamination could have traveled, and in-

reased uncertainty in the backward tracing problem. 

Third, we observe that for each degree distribution setting, the

ecrease in NTE from one observation ( E 1 ) to two observations ( E 2 )

ecomes less distinguishable for higher link density settings. This

gain follows our expectations, since the effect of an additional ob-

ervation of illness in a highly connected food distribution network

ill correspond to a less significant reduction in the number of

easible pathways and sources from which the contamination could

ave traveled, and thus a less significant reduction in uncertainty

n identifying the source. 

.4.2. Joint effect of degree distributions 

We have now seen that for networks generated exclusively from

niform, binomial, or exponential distributions, the shape of the

istribution affects the traceability of the network. In this section,

e further explore the relationship between degree distribution

nd traceability by systematically evaluating NTE for multiple com-

inations of in- and out-degree patterns. Specifically, we will con-

ider the 3 4 = 81 combinations of uniform, binomial, and exponen-

ial degree distributions from the 4-dimensional parameter space

 

out 
F 

, d in 
F D 

, d out 
DR 

, d in 
R 

. As in the basic setup, the average degree is held

onstant for each distribution. The NTE for λ = 1 observation is cal-

ulated as the average over 100 randomly generated networks for

ach of the 81 settings. 

Fig. 6 presents the results in what we call a fractal heat map .

he map is composed of nine major cells each of which is again
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(a) (b)low medium high

Fig. 5. Network Traceability Entropy for food distribution networks with different densities and degree distributions. (a) E 1 ; (b) E 2 . Grey, green, and yellow indicate low, 

medium , and high degree settings, respectively. Error bars represents one standard deviation from the mean for each entropy calculation. 
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Fig. 6. Fractal heat map depicting Network Traceability Entropy E 1 results for networks generated with different distributions determining the configurations of links out of 

and into each supply stage of farms, distributors, and retailers, i.e. d out 
F , d in FD , d 

out 
DR , d 

in 
R . (a) All farms produce same amount of food; (b) the amount of food produced in each 

farm is proportional to its out-degree. Major grid cells in the heat maps represent the out-degree of farms ( d out 
F ) and in-degree of distributors ( d in FD ) and minor cells represent 

the out-degree of distributors ( d out 
DR ) and in-degree of retailers ( d in DR ), with each of the three distributions (binomial, uniform, exponential) represented as indicated. 
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composed of nine minor cells, allowing the four dimensional space

to be represented in a two-dimensional planar plot. Major cells

represent the out-degree of farms ( d out 
F 

) and in-degree of distribu-

tors ( d in 
F D 

) and minor cells represent the out-degree of distributors

( d out 
DR 

) and in-degree of retailers ( d in 
DR 

), with each of the three distri-

butions (binomial, uniform, exponential) represented as indicated. 

Consistent with findings in the previous section, we can see in

Fig. 6 (a) that the highest values for traceability entropy are ob-

served when the network is most homogenous, i.e., when all de-

gree distributions are binomial. Between the out-degree distribu-

tion of farms and the in-degree distribution of distributors, the

out-degree dominates the effect on the traceability entropy: low
ntropy occurs only when the out-degree distribution of farms is

niform or exponential, and reaches its lowest values when the

ut-degree distribution of farms is uniform and the out-degree dis-

ribution of distributors is uniform or exponential. These results

mphasize the importance of the degree configurations on trace-

bility, demonstrating the need to apply network traceability stud-

es to evaluate multi-factorial combinations of feature dimensions. 

We have also investigated the effect of degree distributions

nder conditions of inhomogeneous initial production quantities

cross the farms. Instead of dividing the proportion of food evenly

cross all farms, we divide the proportion of food evenly across all

inks. The Network Traceability Entropy results for the 81 network
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(a) (b) (c)

(d) (e) (f)

Fout=2, Dout=30 Fout=3, Dout=40 Fout=4, Dout=80

Fout=2, Dout=30 Fout=3, Dout=40 Fout=4, Dout=80

Fig. 7. Network Traceability Entropy as a function of regional structure. (a) - (c) E 1 ; (d) - (f) E 2 . From left to right grey, green, and yellow indicate low, medium , and high 

density, respectively. Each plot (a) through (f) depicts the traceability entropy E λ for networks generated with the regional constraint parameter p , for the given density level. 

Solid lines represent food distributed equally across the farms and dashed lines represent food distributed equally across the outgoing degrees. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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onfigurations are presented in the fractal heat map in Fig. 6 (b).

s can be seen by comparing Fig. 6 (a) and (b), the relationship

etween the degree distributions and traceability are quite simi-

ar. When each link carries the same quantity of food, NTE scores

arginally increase in magnitude, and the patterns of difference

etween distribution types become slightly amplified. The ob-

erved consistency implies that traceability depends more on the

tructure of the supply network than on the initial conditions set

y the quantity of food produced at each farm. This is an impor-

ant takeaway and should be explored further in future research

n network traceability. 

.4.3. Regional effects 

Two major trends have influenced the development of food

arket structure in recent years, and they are polarizing: central-

zation and regionalization. The global industrial food system has

ndergone dramatic centralization, or the concentration of produc-

ion into fewer, larger actors with more connections and larger

upply reach [47,48] . This trend has obvious economic benefits,

ncreasing efficiency, reducing costs, and producing higher profit

argins. The trend is also motivated by the consumer demand for

 wider availability of food products, which have more than dou-

led between 20 0 0 and 2010 [27] . At the same time, locally pro-

uced food is seeing a reemerging demand, mainly in developed

ountries, for a variety of reasons including higher product quality

nd stimulation of local economy [4 8,4 9] . 
To model regional structure in food supply networks, we evenly

ivide the farm, distributor, and retailer supply chain sectors into

ve hypothetical regions. We introduce a parameter p determining

he adherence to these regions, such that links are formed between

upply sectors within the same region with probability p and with

ctors across all regions with probability 1 − p. Consequently, p = 0

epresents the absence of regional structure, or complete central-

zation, and p = 1 represents the extreme constraint that food is

nly distributed within the local community, or complete regional-

zation. We then test the effect of p on NTE at each regionalization

alue and each density, for a total of 18 network settings. Results

re presented in Fig. 7 . 

We observe that when only one node has reported illness, NTE

ecreases as local structure increases; in other words, as central-

zation decreases, traceability increases. This is as expected, since

he number of sources any single retailer can connect to will de-

rease as the regional components become more segregated; in the

xtreme case, a given retailer will only be able to connect to the

ubset of farms within its region. 

When two nodes have been contaminated, traceability entropy

xhibits notably different behavior, decreasing with increasing p

ut jumping up to a maximum value when p reaches 1 and

he regions have become segregated. What is happening is that

hen p = 1 , independent sub-networks have been created that

re smaller yet denser than the original network. When p < 1,

TE gradually decreases as the localization constraint increases

or similar reasons as for one contaminated retailer; either both
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Fig. 8. Map of cities covered by the “Important Product Traceability System” (NIPTS), a Chinese Ministry of Commerce initiative established in 2014. As part of this system, 

traceability data on a variety of food products has been collected across 50 piloting cities as indicated. We study pork supply chain data for the first batch of 10 piloting 

cities, marked in green. 
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contaminated nodes are in the same region and can connect to the

subset of farm nodes within that region, or the nodes are in dif-

ferent regions and have an even lower chance of linking to farms

connecting to both regions. 

We also note that the above findings are not biased by the ini-

tial distribution of food production. The effect of regionalization on

E 1 and E 2 is very similar whether the amount of food produced is

evenly distributed across the farms or evenly distributed across all

outgoing links. 

These findings suggest that regional structure has a significant

effect on a network’s traceability. For non-extreme cases, i.e. re-

gionality parameter values around 0.5, cross-regional structures

with high centralization exhibit lower traceability than less dense,

more contained local structures. However decreasing centralization

and increasing local supply structure will improve traceability only

to a point. When entire sections of a network are isolated into in-

dependent components, a threshold is crossed and traceability de-

creases. Some degree of mixing between components is needed to

limit the feasible source set and decrease the uncertainty in the

source identification problem. This insight has important implica-

tions for policy and practice and should be further investigated

given current trends in global food market systems. 

5. Case study 

5.1. Data description 

Our case data comes from China’s “National Important Prod-

uct Traceability System” (NIPTS), which is initiated under the in-

structions of the State Council and is constructed by the Ministry

of Commerce (MOFCOM), in conjunction with Ministry of Industry
nd Information Technology (MIIT), Ministry of Agriculture (MOA),

hina’s Food and Drug Administration (CFDA), among other agen-

ies, to build a national level platform for sharing and exchange of

raceability data amongst relevant departments, enterprises, pro-

ucers and traders of key products including edible agriculture

roducts, food products, drugs, agricultural inputs, special equip-

ent, and hazardous materials and rare earth. The NIPTS was es-

ablished in 2014 with the goal of improving food safety and pro-

oting the government’s “Internet and Agriculture Act” [50] . The

ystem has been implemented in more than 15,0 0 0 corporations

nd 320,0 0 0 shops across 58 piloting cities, and continues to ex-

and. Since its establishment in 2014, more than 2 billion transac-

ion records have been collected, with the NIPTS receiving around

 million records on a daily basis. Details of the implementation

nd updated progress of the NIPTS can be found from the govern-

ent’s webpage https://www.zyczs.gov.cn . 

Without loss of generality, we analyze pork supply chain data

rom the first batch of 10 NIPTS pilot cities (marked as green nodes

n Fig. 8 ) during the year of 2015. The data documents the flow

f pork between the three supply chain stages of farms, slaugh-

erhouses, and retailers for participating establishments. For each

stablishment, the origin, destination, date, and volume of each

ransaction are recorded. Setting farms, slaughterhouses, and retail-

rs as nodes and transactions as links, we transform the data into

upply chain networks. As the NIPTS is still expanding, the data

nd resulting networks may only cover a portion of the real pork

upply chain in the cities considered. The analysis demonstrated

ere therefore serves as an illustration of what can be learned

y applying Network Traceability Entropy to real network data, and

ow it can inform the design or redesign of networks for improved

raceability. 

https://www.zyczs.gov.cn
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Fig. 9. Visualizations of the pork supply chain networks for ten cities in China based on data from NIPTS. Cities from left to right: Ningbo, Hangzhou, Chengdu, Chongqing, 

and Kunming on the top and Wuxi, Shanghai, Qingdao, Nanjing, and Dalian on the bottom. Colors represent type of node with farms in black, slaughterhouses in yellow, 

and retailers in green. Node size and edge weights corresponding to the total volume of product flows. 

Fig. 10. Degree distribution and correlation of traceability entropy and prediction accuracy in pork supply networks for ten cities in China. (a) Distribution of the volume 

of pork, w 

′ , carried along all links from farm to slaughter house (in yellow) and slaughter house to retailer (in green) across the 10 networks. w 

′ is normalized by the 

maximum transaction volume for each set of supply chain stages. (b) Correlation of traceability entropy and predictive accuracy with one observed illness report and (c) 

with two observed illness reports. Predictive accuracy results with g = 1 guess for the source farm are indicated in green and with g = 10 guesses in yellow. Grey circles 

represent intermediate numbers of guesses. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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t  
.2. Network structural analysis 

Fig. 9 depicts the networks for the 10 pilot cities and in

able 2 we list the size and average in- and out-degree between

odes in each stage. We include the low, medium , and high density

etworks from Section 3 for comparison, demonstrating that the

alues chosen for simulation studies are representative of the val-

es in the real data. We also plot in Fig. 10 the distribution of the

olume of pork carried along all links from farm to slaughterhouse

in yellow) and slaughterhouse to retailer (in green) across the 10

etworks. The plot depicts the probability of observing a transac-

ion of volume w 

′ , which is normalized by the maximum observed

ransaction volume for each pair of supply chain stages. 

The 10 networks differ widely in size and density of connec-

ions. The variation in density is considerable, with some networks

xhibiting average densities slightly lower than the low density

etting explored in the simulation studies (e.g. Qingdao) and other

etworks exhibiting densities much higher than the high density

xample networks (e.g. Chengdu, Chongqing, Shanghai, and Wuxi).
 m  
espite the variability in density, the networks all share a simi-

ar connection motif of a proportionally small number of slaugh-

erhouses connected to a much larger number of retailers, visi-

le as hub-and-spoke patterns in the network visualizations. Fur-

hermore, most of the cities feature slaughterhouses supplied by

ultiple farms and which in turn supply a large number of retail-

rs. With high in- and out-degrees, slaughterhouse nodes act as

bottlenecks” in the forward flow of product through the network. 

arge bottlenecks are especially visible in networks of the cities

hongqing and Wuxi. We have already seen that density is an im-

ortant factor in determining traceability. Below we will see that

ottlenecks are another important factor in determining (or limit-

ng) traceability. 

.3. Correlation of NTE and predictive accuracy in the 10 pilot cities 

We start by measuring the correlation between the NTE E λ and

he prediction accuracy 〈 γ ( g ) 〉 for each network. Following the

ethodology described in Section 4 , we create outbreak scenarios
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Fig. 11. Traceability Entropy as a function of the average in-degree ( ̄d in FD ) from farms 

to slaughterhouses for the 10 case study networks, for (a) one report of illness and 

(b) two reports of illness. 
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then calculate the probability of accurately identifying the simu-

lated outbreak source, allowing a variable number of guesses g ∈ [1,

10] for the source farm. Fig. 10 presents predictive accuracy at each

value of g as a function of NTE for outbreaks observed in λ = 1

retailer (b) and λ = 2 retailers (c). Results at g = 1 guess are indi-

cated in green and at g = 10 in yellow. 

The results in Fig. 10 demonstrate that a clear negative lin-

ear relationship exists between E λ and 〈 γ ( g ) 〉 in the pork sup-

ply networks. The correlation is more significant for higher val-

ues of g . When g = 10 , the Pearson correlation coefficient between

E 1 and 〈 γ (1) 〉 is −0 . 92 ( p < . 001 ), while when g = 1 , the correla-

tion is −0 . 82 ( p < . 003 ). Similarly, for E 2 , the correlation coefficient

is −0 . 88 when g = 10 ( p < . 001 ) and -0.64 when g = 1 ( p = . 036 ).

The observed correlation for higher values of g suggests that when

applied to real data, NTE is effectively measuring the ability to

trace back the source of actual outbreaks, whereas for lower val-

ues of g the lack of strong correlation indicates that prediction ac-

curacy is not capturing the information about the predictability of

accurate source identification as NTE . 

5.4. Insights for network design with improved traceability 

We now discuss how NTE might be used to recommend strate-

gies for proactively improving traceability in supply chain net-

works based on insights gained from the analysis of network struc-

tural parameters in the previous sections. One of the core find-

ings from the Network Traceability Entropy results is that the scores

are widely distributed, suggesting that the ability to identify the

source of outbreaks differs markedly across the cities. Values range

from a minimum of { E 1 , E 2 } = { 1 . 7 , 1 . 4 } observed for Qingdao to a

maximum of { E 1 , E 2 } = { 5 . 6 , 5 . 3 } observed for Wuxi. These scores

mean that in the event of an outbreak occurring in the pork sup-

ply chain in Qingdao, the effective number of feasible sources can

be narrowed down to 2 1 . 4 = 2 . 6 farms after two reports of illness,

on average. For the same outbreak and illness reporting scenario

occurring in Wuxi, the effective number of feasible sources is only

narrowed down to 2 5 . 3 = 39 . 4 farms. In practical terms, these fig-

ures suggest very different likelihoods of successful investigations

to identify the source of an outbreak. Whereas it might be reason-

able for public health responders to investigate and sample the 2

to 3 culprit farms supplying pork to Qingdao, the same might not

be feasible for the 39 potential culprits supplying Wuxi. 

For any outbreak occurring in the Wuxi supply chain, the un-

certainty in the traceback investigation can be decreased only by

waiting for more cases of illness to report, clearly an undesirable

solution. However, proactive measures could be taken to improve

traceability in supply chains like this by making strategic modifi-

cations to the network structure. 

For example, we observe that the 3 cities with the highest NTE

scores, Wuxi, Chongqing, and Hangzhou, exhibit the highest values

for average in-degree to the slaughterhouse stage ( ̄d in 
F D 

), the param-

eter indicating bottleneck behavior. To explore the role of this pa-

rameter on traceability in the full dataset, in Fig. 11 we plot NTE

as a function of the average in-degree to the slaughterhouse stage.

The observed positive correlation suggests that bottlenecks are an

important factor in determining traceability. This follows our ex-

pectations, since when many farms supply a single slaughterhouse

it becomes difficult to distinguish between them at this bottleneck

to identify the culprit of an outbreak. This finding suggests that

an effective means of improving traceability would be to decrease

the number of links into the distribution stage. However, system-

level changes such as increasing the number of slaughterhouses

or decreasing the number of links into each existing slaughter-

house might not be feasible or even desirable. Strategies might also

be imagined to achieve an “effective” increase in the number of

slaughterhouses or decrease in the number of links through opera-
ional changes. One possible strategy would be to compartmental-

ze the slaughterhouses such that each facility is divided into in-

ependent sections that process product only from specific farms.

n this way, Wuxi’s two slaughterhouses (see Table 2 ) could be

ivided into 10 sub-sections, each of which trade only with 10%

f the farms. The average in-degree to the slaughterhouse stage

ould become 251 / 20 = 12 . 6 , which is comparable to the average

n-degree of Qingdao (at 11.8), the supply chain with the lowest

ntropy score. Of course with any divisions or compartmentaliza-

ion, it would be important to ensure that essential system flexi-

ility is not lost; this could be verified by designing divisions such

hat each division is self-sufficient in production and demand of

roduct. 

This discussion and any supply chain design changes mentioned

re only suggestive. Before implementing any policy or operational

hanges a full study would be necessary to investigate (i) which

tructural variables have the greatest influence on traceability, (ii)

hat combination of parameter values for these variables opti-

ally facilitate traceability, and (iii) what changes could feasibly be

mplemented to a systemic supply chain network. Nonetheless, the

esults discussed here present the first steps into the development

f a quantified study of how network parameters affect traceabil-

ty, and consequently, how this knowledge can inform the design

r redesign of network structure. 

. Conclusions and discussion 

While significant work has focused on understanding the role of

etwork structure on propagation dynamics, its impact on trace-

bility, or the ability to identify the propagation source, has re-

eived much less attention. In this paper we propose a novel quan-

ity, Network Traceability Entropy ( NTE, E λ), to measure the ability

f a network structure to support accurate source identification.

his measure calculates the information-theoretic entropy of the

osterior probability distribution for the source location resulting

rom implementing a network source identification inference algo-

ithm. NTE is comprehensive and efficient: by summarizing infor-

ation about the full posterior probability distribution over feasi-

le sources into a single score, this measure presents an improve-

ent over the existing simulation-based predictive accuracy met-

ic that is based on a single binary outcome or single rank value,

hile being just as convenient. Illustrative examples have been

rovided to demonstrate this improvement. 

Our work provides the first study systematically evaluating the

ole of network structural parameters on the ability to identify

utbreak sources. Using food supply chain networks as an exam-

le and varying a range of topological properties, we use NTE as a

ool to compare the traceability of various network configurations.

his study yields three main observations. First, we have seen that
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raceability will be higher if a network is less densely connected,

r if the degree distributions are more heterogeneous. These re-

ults, which demonstrate expected behavior of traceability in re-

ponse to changes in network structure, serve as an initial valida-

ion of NTE as an appropriate measure of network traceability. 

Second, analysis of the impact on traceability of the amount of

centralization” or “regionalization” in food supply network com- 

unity structures reveals interesting findings. On the whole, sup-

ly networks with high centralization exhibit lower traceability

han structures with high regionalization connections. However

ecreasing the number of cross-regional connections in favor of in-

reasing intra-regional connections will improve traceability only

o a point, above which it will drop dramatically. This result sug-

ests there exists an optimal tradeoff, an observation with impor-

ant implications in the context of ongoing trends in global and

ocal food market development. 

Third, we find that the initial volumes of food produced, or the

rior distribution over feasible sources, does not bias NTE results.

his result implies that network structure itself dominates the de-

ermination of traceability, highlighting the importance and feasi-

ility of applying this universal measure to quantify, compare, and

ptimize networks with various topology. 

The case study reiterates the results from the stylized network

nalysis, emphasizing the impact of network density, and in par-

icular, the important role played by bottleneck nodes in limiting

raceability. Moreover, the large variability in traceability scores

bserved across the 10 real supply chain networks studied, indi-

ating accordingly varied likelihoods of successful source identifi-

ation in the event of an outbreak, highlights relevant information

or public health emergency preparedness. 

With the powerful ability to diagnose and compare the trace-

bility of various networked settings, this tool has important im-

lications for both policy and managerial decision makers. For ex-

mple in the context of food distribution, policy decision makers,

.g. the FDA and local health departments, emergency prepared-

ess officials, and other risk assessment bodies in charge of pro-

iding public health monitoring, might be interested in proactively

omputing and comparing the traceability scores of the aggregated

upply chains for various food products in order to identify high-

isk and therefore high-priority items. Highly centralized or highly

egionalized supply chains might receive special focus. For sup-

ly chains posing a greater risk, resources might be allocated to

onitor these items more closely or to insert more preventative

ontrols. For example, the 2011 Food Safety Modernization Act

FSMA) now requires the identification of high-risk foods, moni-

oring these products with additional recordkeeping requirements

51,52] . The NTE metric could contribute to determining this high-

isk product set. Companies with high traceability scores might be

xempted from specific requirements, or be rewarded for increas-

ng their traceability score. For managerial decision makers respon-

ible for a company’s logistics operations, the traceability metric

ould be used to diagnose the traceability of existing or proposed

upply structures. The results might inform design or redesign of

hese structures, e.g. diversifying the supply to decrease the num-

er of connections into bottleneck facilities. As suggested in the

ase study, the traceability score can also be used to determine ef-

ective changes to operations that do not require any structural or

arket changes. In other network and problem contexts, this tool

an be used to similarly diagnose high-risk system settings, or to

nform the design of network configurations that maximize trace-

bility. 

It is important to note that a measure of network traceability

s only as good as the network data available to analyze. Access to

igh-quality network data is therefore the major prerequisite and

mplementation challenge for any study of traceability. With the

apid expansions of big data technologies such as RFID, Internet-
f-Things, and Blockchain, full system network data is becoming

oth more frequently recorded and more comprehensive. The data

rom the Chinese “Important Product Traceability System” evalu-

ted in the case study is one such example, with abundant supply

ata readily available for real-time monitoring and analysis. Still,

ven the most comprehensive data capture systems will be lim-

ted to regulated market data only and cannot make predictions

egarding food produced or tampered with illegally. Therefore no

tudy results should be concluded or changes to network structure

rescribed without first addressing potential data limitations. For

xample, with regard to the applications mentioned above, since it

s not possible to map any live market supply chain perfectly (as in

ur case study data), future work would need to be done to iden-

ify the sensitivity of the traceability score to missing information

n network structure and dynamics. 

With these implementation challenges in mind, this work

erves as an illustration of what can be learned by applying NTE

o high-quality network data, when available, and provides a first

tep into the development of a quantified theory of the relation-

hip between traceability and network structure. The joint effect

f various network parameters (e.g., degree distribution, density,

ow distribution, community structure, spatial structure) on net-

ork traceability opens possibilities for traceability studies from

n operational perspective. Future studies should concentrate on

dentifying combinations of adaptable or flexible features that are

ot only important in determining traceability, but that also can

e modulated in real networks in order to inform the design or

emodeling of food supply structures. While a simplified model of

utbreak propagation and source estimation is assumed in this pa-

er, there is an opportunity in the future to augment the analysis

ere with more comprehensive spatio-temporal probabilistic ap-

roaches for contamination source localization, or to augment the

odel to consider multiple outbreak sources. Future studies may

lso apply the method in a more realistic setting, such as in com-

ination with electronic track-and-trace information e.g. RFID data

53] . Furthermore, Network Traceability Entropy can be extended

o many other network problem settings involving transmission

rocesses, such as identifying the source of defective or counter-

eit parts in manufacturing supply chains, disease contagion, virus

nfection, or rumors spreading in social media. 
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