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Stochastic Processes: Introduction

• Sometimes we need to consider uncertainty about a sequence of future events:

• Uncertain weather in Napa valley every week over the grape season 

• Uncertain daily evolution of stock prices 

• Uncertain disease progression status

• We need probability models for systems that evolve over time or events in a 
probabilistic manner – stochastic processes



Stochastic Processes

• Suppose we take a series of observations of a random variable, X0, X1, X2,...

• A stochastic process is an indexed collection of random variables {Xt}, where t is the 
index from a given set T. (The index t often denotes time.)

Examples: 

• Roll a die 10 times, Xi = number on die on ith roll, i=1,2,...,10. Note that Xi takes integer 
values from 1 to 6. The stochastic process {Xt } = {X1 , X2 ,...} denotes the sequence of rolls. 

• Sales of an item, Xt = number of items sold on day t, t=1,2,...Then the stochastic process 
{Xt} = {X0 , X1 , X2 ,.....} provides a mathematical representation of how the sales evolve 
starting today



Markov Chains: Introduction

• Stochastic process: A sequence of random variables
• Markov chains are special stochastic processes having: 
• A discrete sample space, 

• discrete time increments,

• and a “memoryless” property, indicating that how the process will evolve in the 
future depends only on the present state of the process

• Markov processes are stochastic processes having:
• A discrete sample space, 

• continuous time epochs 

• and the “memoryless” property

Today we will focus on Markov chains
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Why study Markov chains?

Relevance to many health applications, e.g.: 
• Medical decision making 

• Cost effectiveness studies

• Disease modeling

• Infectious disease spreading

Markov chains underlie very important methods, e.g.:
• Markov chain Monte Carlo methods

• Hidden Markov Models (time series etc.)
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Markov Chains: Sample Questions to Ask

• What is the probability that the chain is in state 𝑖 after 𝑛 steps? 

• What percent of the time is the chain in state 𝑖?
• What is the expected time it will take for the process to reach state 𝑖 starting 

from state 𝑗?
• What is the expected time until the process reaches state 𝑖 for the first time?  or 

returns to state 𝑖?
• What is the probability that the chain will terminate at state 𝑖 ?
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States and State Space
• State: Description of the current “situation” of the system

(Can be qualitative or quantitative)

• States are discrete

• The state space can be finite or infinite

• The state characterization must be mutually exclusive (no intersection) and exhaustive (include all 
possibilities)

• Examples:
• Disease status

• Susceptible, Infected, Recovered

• Each week, the condition of a machine is determined by measuring the amount of electrical current it uses
• High, Medium, Low, Failed

• Weather monitoring
• State: temperature (0 deg, 1 deg, …, 100 deg)
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Markov Chain: Definition
• Markov Chain: A stochastic process that is

1. Stationary: The transitions do not depend on the time step

2. Memoryless: The transitions depend on the current state of the system, but not on 
past states (the Markov Property)

• Transition probabilities

• Matrix representation: Storage of the transition probabilities
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Weather Example: Transition Probabilities
• Suppose the probability that tomorrow is dry is 0.8 if today is dry, but is 0.6 if it rains today.  

• We write:  
P(dry tomorrow | dry today) = 0.8 = P(X1=0 | X0=0) 
P(dry tomorrow | rainy today) = 0.6 = P(X1=0 | X0=1) 

• Or, for any day t, we write: 
P(Xt+1=0 | Xt=0) = 0.8 and P(Xt+1=0 | Xt=1) = 0.6

• Suppose we are given the states of weather on days 0,1,2,3. That is, suppose we know that X0=0 X1=0 
X2=1, X3=0 (dry, dry, rainy, dry). 

• What is the probability that X4=0?  
• Mathematically, what is P(X4=0 | X3=0, X2=1, X1=0, X0=0) ? 
• We have P(X4=0 | X3=0) = 0.8, and, in writing this number we did not care about the values of X2 X1 X0 
• This observation is true for any values of X3 X2 X1 X0  and in fact for any t. 

• Intuitively, given today’s weather and the weather in the past, the conditional probability of tomorrow’s 
weather is independent of weather in the past and depends only on today’s weather
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Weather Example: Transition Probabilities
• The weather chain:

• p00 =P(Xt+1 = 0| Xt = 0) = 0.8 

• p10 =P(Xt+1 = 0| Xt =1) = 0.6 

• p01 =P(Xt+1 = 1| Xt = 0) = 1-P(Xt+1 = 0| Xt=0) = 0.2 

• p11 =P(Xt+1 = 1| Xt =1) = 1-P(Xt+1 = 0| Xt =1) = 0.4

13



Gambler’s Ruin Example: Properties

• Consider a gambling game with probability p=0.5 of winning on any turn, you start with $1, stop when 
you go broke or reach $5 

• What are the random variables of interest, Xt? 
• Xt =$fortune on turn t

• What are the possible values (states) of the random variables? 
• {0,1,2,3,4,5} 

• What is the index t? 
• turn of the game

• Does the Gambler’s Ruin stochastic process satisfy the Markovian property? 
• Yes, intuitively, given your current gambling fortune and all past gambling fortunes, the conditional probability of your 

gambling fortune after one more gamble is independent of your past gambling fortunes and depends only on your 
current gambling fortune. More formally, P(X5=0 | X4=1, X3=2, X2=1, X1=2, X0=1) = P(X5=0 | X4=1) = 0.5. 

• Is the Gambler’s Ruin stochastic process stationary? 
• Yes, intuitively, the probability of winning is the same for all turns of the game. More formally, P(Xt+1=0 | Xt=1) = 0.5 

for all t.



Gambler’s Ruin Example: Transition Probabilities

• State transition diagram:

• One-step transition matrix P:

$1$0 

0.5

1

$2 $3 $4 $5

0.5 0.5 0.5

0.50.5 0.50.5
1

P (X0 = 0) =
1

2
= P (X0 = 1) (30)
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0.5 0 0.5 0 0 0
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3
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0 0.5 0 0 0 0.5
0.5 0 0.5 0 0 0
0 0.5 0 0.5 0 0
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P(Xt+n=j — Xt= i), which is denoted by pij(n)

P (Xt + n = j|Xt = i)p(n)ij (31)
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Multi-step Transition Probabilities

• So far, we have only focused on one-step transition probabilities pij

• But what if we are interested in the answer to the question, for example, if it is sunny 
today, what is the probability that it will be sunny day after tomorrow?

• These are called multi-step (or n-step) transition probabilities. 

• In particular, we want to find which is denoted by 



2-step Transition Probabilities: Weather Example

• Intuition: to go from state 0 to 0 in two steps we can either:

• Go from 0 to 0 in one step and then go from 0 to 0 in one step OR

• Go from 0 to 1 in one step and then go from 1 to 0 in one step 

• Therefore, p(2)
00 = P(X2 = 0 | X0 =0) = p00p00+p01p10

• And more generally,

• Now use the above intuition to write down the other 2-step transition probabilities 

• p(2)
01 , p(2)

10 , p(2)
11
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2-step Transition Probabilities: Weather Example

• These four two-step transition probabilities can be arranged in a matrix P(2) called the two-
step transition matrix

• Interpretation: p01
(2) is the probability that the weather the day after tomorrow will be rainy 

if the weather today is dry.

• An interesting observation: the two-step transition matrix is the square of the one-step 
transition matrix! 

• That is, 

• Why? Recall matrix product

V iTj =

P
j V iTj ⇤UsersTjP

j UsersTj

(1)

p(2)00 =
1X

k=0

p0kpk0 (2)

p(n)ij =
SX

k=0

p(m)
ik p(n�m)

kj (3)

p(n)ij =
SX

k=0

p(1)ik p(n�1)
kj (4)

P (n) = P (m)P (m�n) (5)

P (2) =

✓
0.8 0.4
0.6 0.2

◆2

=

✓
0.76 0.24
0.72 0.28

◆
(6)

Interesting is that
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2-step Transition Probabilities
• For a general Markov chain with states 0,1,...,S, to make a two-step 

transition from i to j, we go to some state k in one step from i and then 
go from k to j in one step. 

• Therefore, the 2-step transition probability matrix is:



Multi-step Transitions: Chapman-Kolmogorov equations
• For a general Markov chain with states 0,1,...,M, the n-step transition from i to j means the 

process goes from i to j in n time steps 
• Let m be a non-negative integer not bigger than n. The Chapman-Kolmogorov equation is:

• Interpretation: if the process goes from state i to state j in n steps then it must go from 
state i to some state k in m (less than n) steps, and then go from k to j in the remaining n-
m steps. 
• Consider the case when n=1:
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P
j V iTj ⇤UsersTjP
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p(2)00 =
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p(n)ij =
SX
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p(m)
ik p(n�m)
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Interesting is that

P (2) =

 
p(2)00 p(2)01

p(2)10 p(2)10

!
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✓
p00p00 + p01p01 p00p01 + p01p11
p10p00 + p11p10 p10p01 + p11p11

◆
(4)

P (2) =

0

BBB@

p(2)00 p(2)01 ... p(2)0S

p(2)01 p(2)11 ... p(2)1S
... ... ... ...

p(2)S0 p(2)S1 ... p(2)SS

1

CCCA
(5)

P (2) = P 2 (6)
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Multi-step Transitions: Matrix representation
• The pij

(n) are the elements of the n-step transition matrix, P(n)

• In matrix notation, 

• This implies that the n-step transition matrix is the nth power of the one-step transition, and 
so on:
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Classification of States
• Absorbing state: Once you get in, you can never leave

• Transient state: Once you leave, you may not come back

• Recurrent state: You will come back eventually

23
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Classification of States: Gambler’s Ruin Problem

• State transition diagram:

• Transient states?

• Recurrent states?

• Absorbing states?

$1$0 

0.5

1

$2 $3 $4 $5

0.5 0.5 0.5

0.50.5 0.50.5
1



Irreducibility
• Two states i and j communicate if there exists a path from i to j and a path from j to i

with non-zero probabilities

• A chain is irreducible if all its states communicate

• If a chain is irreducible, either all its states are recurrent (“most of the time”), or all its 
states are transient

25
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Periodicity
• A state i is periodic if it is visited only in a number of steps which is a multiple of an integer 

d > 1:

• The state i is aperiodic otherwise

• A state with a self-loop (i.e. pii>0) is always aperiodic 

26
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Irreducibility and Periodicity: Example

• Which of the following chains are Irreducible? Periodic?

Irreducible

Period = 3

Irreducible

Aperiodic
Reducible, 2 classes Each 

class is aperiodic



Ergodicity
• A Markov Chain is ergodic if it is

• Irreducible

• Recurrent (i.e., all its states are recurrent)

• Aperiodic (i.e., all its states are aperiodic)

• Why do we care?

• If a Markov chain is irreducible and recurrent, then its long-term behavior does not depend on 
initial conditions

• If a Markov chain is also aperiodic, then its long-term behavior reaches “steady state,” i.e., 
does not change from stage to stage
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Unconditional Probability in state j at time n

• The transition probability pij
(n) is a conditional probability, P(Xn=j | X0=i) 

• How do we “un-condition” the probabilities? 

• That is, how do we find the (unconditional) probability of being in state j at time n, P(Xn=j)? 

• Uncondition on the probabilities P(X0=i) defining the initial state distribution:

P (Xn = j) =
SX

i=0

P (Xn = j|X0 = i)P (X0 = i) (13)

= p(n)ij P (X0 = i) (14)

(15)

P (Xn = j) =
SX

k=0

P (Xn = j|X0 = i)P (X0 = i) (16)

= p(n)ij P (X0 = i) (17)

(18)

P (X2 = 0) =
2X

k=0

p(2)ij P (X0 = i) (19)

= p(2)00 P (X0 = 0) + p(2)01 P (X0 = 1) (20)
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Unconditional Probabilities: Weather Example

• If initial conditions are unknown, we might assume it’s equally likely to be in any initial state: 

• Then, what is the probability that it is Dry (state 0) in two days? 

• P(X = 0 in 2 days ) = P(in state 0 at time 2) = 

R2 =
�
c s

�✓ 1 0
0 1

◆✓
c
s

◆
= c2 + s2 (15)

P (X0 = 0) =
1

2
= P (X0 = 1) (16)

P =

2

6666664

0 0.5 0 0 0 0.5
0.5 0 0.5 0 0 0
0 0.5 0 0.5 0 0
0 0 0.5 0 0.5 0
0 0 0 0.5 0 0.5
0.5 0 0 0 0.5 0

3

7777775

P(Xt+n=j — Xt= i), which is denoted by pij(n)

P (Xt + n = j|Xt = i)p(n)ij (17)

November 26, 2019 0 / 0

V iTj =

P
j V iTj ⇤UsersTjP

j UsersTj

(1)

p(2)00 =
1X

k=0

p0kpk0 (2)

p(n)ij =
SX

k=0

p(m)
ik p(n�m)

kj (3)

p(n)ij =
SX

k=0

p(1)ik p(n�1)
kj (4)

P (n) = P (m)P (m�n) (5)

P (2) =

✓
0.8 0.4
0.6 0.2

◆2

=

✓
0.76 0.24
0.72 0.28

◆
(6)

P (2) =

✓
0.76 0.24
0.72 0.28

◆
(7)

November 26, 2019 0 / 0

P (Xn = j) =
SX

i=0

P (Xn = j|X0 = i)P (X0 = i) (13)

= p(n)ij P (X0 = i) (14)

(15)

P (X2 = 0) =
2X

i=0

p(2)i2 P (X0 = i) (16)

= p(2)00 P (X0 = 0) + p(2)10 P (X0 = 1) (17)
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(19)

P (2) = P 2 (20)

R2 =
�
c s

�✓ 1 0
0 1

◆✓
c
s

◆
= c2 + s2 (21)

November 26, 2019 0 / 0



Steady-State Probabilities
• As n gets large, what happens? What is the probability of being in any state? 

• Consider the 5-step transition probability for the weather example: 

• In the long-run (e.g., after 5 or more days), the probability of being in state j converges

à No longer depends on initial state

• These probabilities are called the steady-state probabilities
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j UsersTj
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P (n) = P (m)P (m�n) (5)

P (5) =

✓
0.8 0.4
0.6 0.2

◆5

=

✓
0.7501 0.2499
0.7498 0.2502

◆
(6)

P (2) =

✓
0.8 0.4
0.6 0.2

◆2

=

✓
0.76 0.24
0.72 0.28

◆
(7)

November 26, 2019 0 / 0

V iTj =

P
j V iTj ⇤UsersTjP

j UsersTj

(1)

lim
n!1

p(n)ij = ⇡j (2)

p(2)00 =
1X

k=0

p0kpk0 (3)

p(n)ij =
SX

k=0

p(m)
ik p(n�m)

kj (4)

p(n)ij =
SX

k=0

p(1)ik p(n�1)
kj (5)

P (n) = P (m)P (m�n) (6)

P (5) =

✓
0.8 0.4
0.6 0.2

◆5

=

✓
0.7501 0.2499
0.7498 0.2502

◆
(7)

November 26, 2019 0 / 0



Observations about this limit

• This limit exists for any “irreducible ergodic” Markov chain

• The behavior of this important limit depends on properties of states i and j and the 
Markov chain as a whole. 
• If j is transient, then for all i

• Intuitively, the probability that the Markov chain is in a transient state after a large number of transitions 
tends to zero. 

• If the chain is periodic, the limit will not exist

V iTj =

P
j V iTj ⇤UsersTjP

j UsersTj

(1)

lim
n!1

p(n)ij = ⇡j (2)

lim
n!1

p(n)ij = 0 (3)

p(2)00 =
1X

k=0

p0kpk0 (4)
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Stationary Distribution

• How can we find the probabilities pj without calculating P(n) for very large n? 

• The following are the steady-state equations:

• Solve a system of linear equations!

Once you reach this distribution, you stay there

lim
n!1

p(n)ij = 0 (7)

⇡j =
MX

i=0

⇡ipij (8)

⇡T = P⇡T (9)

MX

j=0

⇡j = 1 (10)

fij =
1X

n=1

f (n)
ij (11)

p(2)00 =
1X

k=0

p0kpk0 (12)

p(n)ij =
SX

k=0

p(m)
ik p(n�m)

kj (13)
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n=1

f (n)
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1X

k=0
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November 30, 2019 0 / 0

Above, in matrix form

The pj form a probability distribution 

The pj are defined (for ergodic chains)



Solving for Stationary Distribution

General idea:

Go from steady state to steady state



Other (Intuitive) Properties

37

First passage time:

• Another interpretation is that πj is the fraction of time the process is in state j (in the long-run) 
Meaning, the stationary distribution corresponds to the long-run frequency of each state’s occupancy:

• The longer it takes to “return” to any state, the less time you spend in that state



Typical Applications of Steady-State Probabilities / Ergodic Chains

• Expected recurrence time: the expected number of steps between consecutive visits to a 
particular (recurrent) state

• To answer questions such as, What is the expected number of sunny days between rainy days? 

• First passage time: the time at which the Markov chain visits a particular state for the first time 
• Typical quantities: First passage time probability, Expected first passage time

• Number of visits to a state at a certain time

• Long-run expected average cost per unit time (if a cost is incurred or gain rewarded every time 
a Markov chain visits a specific state)



Expected Recurrence Time

• The expected recurrence time, denoted μjj , is the expected number of transitions between two 
consecutive visits to state j. 

• Due to the frequency interpretation of the probabilities, the steady state probabilities, πj, are 
related to the expected recurrence times, μjj, as

V iTj =

P
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First Passage Times

• Definition: The first passage time from state i to state j is the number of transitions made by the 
process in going from state i to state j for the first time 
• When i = j, this first passage time is the recurrence time for state i

• Let fij
(n) = probability that the first passage time from state i to state j is equal to n 

• What is the difference between fij
(n)and pij

(n)? 

• pij
(n) includes paths that visit j

• fij
(n)a does not include paths that visit j



Observations on First Passage Times

• First passage times are random variables and have probability distributions associated with them 

• fij
(n) = probability that the first passage time from state i to state j is equal to n 

• These probability distributions can be computed using a simple idea:  condition on where the 
Markov chain goes after the first transition: 

• For the first passage time from i to j to be n>1, the Markov chain has to transition from i to k (different from j) in 
n=1, and then the first passage time from k to j must be n-1. 

• This concept can be used to derive recursive equations for fij
(n)

(and is frequently used in finding relationships in Markov chains)



First Passage Times: Recursive Equations

• The first passage times satisfy a recursive relationship:



Probability of Ever Reaching j from i

• If the chain starts out in state i, what is the probability that it visits state j at some future time?

• This probability is denoted fij , and

• If fij=1, then the chain starting at i definitely reaches j at some future time, in which case f(n)
ij is a 

genuine probability distribution for the first passage time.

• On the other hand, if fij<1, the chain starting at i may never reach j. In fact, the probability that 
this happens is 1- fij.
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Expected First Passage Time
• The expected first passage time from i to j is:

• There is another way to compute the expected first passage times μij , which is to use the same 
idea as for finding recursive relations for first passage time probabilities: condition on where the 
chain goes after one transition

• System of equations:
Goes in  (1 + μkj)  stepsGoes in 1 step
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Absorbing Markov Chains

• Quantities of interest:

• Probability of absorption at k starting from i, fik
• Expected time to absorption at k 

• Expected number of times process is in state j before being absorbed

• Absorbing states

• Absorbing state: once the chain visits state k, it remains there forever, pkk = 1

• We are interested in fik when i is a transient state and k is an absorbing state

Gambler’s Ruin absorbing chain



Linear Equations for Absorption Probabilities

• As before, we condition on the first transition of the Markov chain to get:

with fkk=1 for absorbing state k, and fjk=0 when j is a recurrent state

V iTj =

P
j V iTj ⇤UsersTjP

j UsersTj

(1)

j = 0, 1, ..., S

lim
n!1

p(n)ij = ⇡j (2)

µjj =
1

⇡j
(3)

µij =
1

⇡j
(4)

lim
n!1

p(n)ij = 0 (5)

fik =
MX

j=0

pijfjk (6)

fik = pij +
X

j2Q

pijfjk (7)

November 26, 2019 0 / 0



Matrix Equations for Absorption Probabilities
• First, it is convenient to consider the canonical form of matrix P in aggregated version by uniting all 

transient states and all absorbing states:
• Let Q represent transient states, for t transient states
• Let R represent absorbing states, for r absorbing states
• Then we have 

Where 

- Q is a t-by-t matrix
- R is a nonzero t-by-r matrix, 
- 0 is an r-by-t zero matrix, and 
- Ir is the r-by-r identity matrix. 

• Q describes the probability of transitioning from some transient state to another

• R describes the probability of transitioning from some transient state to some absorbing state



Matrix Equations for Absorption Probabilities

• With Q and R, the equation for absorbing probabilities, 

can be decomposed into transient to absorbing transitions, and transient to transient 
followed by transient to absorbing transitions, as:

• Which can be rewritten in matrix form, and solved for the absorbing probability matrix A as:
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Matrix Equations for Absorption Probabilities: Gambler’s Ruin

• Reorganizing the matrix into canonical form:

$1$0 

0.5

1

$2 $3 $4 $5

0.5 0.5 0.5

0.50.5 0.50.5

P (X0 = 0) =
1

2
= P (X0 = 1) (30)

P =

2

6666664

1 0 0 0 0 0
0.5 0 0.5 0 0 0
0 0.5 0 0.5 0 0
0 0 0.5 0 0.5 0
0 0 0 0.5 0 0.5
0 0 0 0 0 1

3

7777775

P =

2

6666664

0 0.5 0 0 0 0.5
0.5 0 0.5 0 0 0
0 0.5 0 0.5 0 0
0 0 0.5 0 0.5 0
0 0 0 0.5 0 0.5
0.5 0 0 0 0.5 0

3

7777775

P(Xt+n=j — Xt= i), which is denoted by pij(n)

P (Xt + n = j|Xt = i)p(n)ij (31)
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P (2) =

✓
0.8 0.4
0.6 0.2

◆2

=

✓
0.76 0.24
0.72 0.28

◆
(14)

P (2) =

✓
0.76 0.24
0.72 0.28

◆
(15)

A =

0

BB@

0.8 0.2
0.6 0.4
0.4 0.6
0.2 0.8

1

CCA (16)

Interesting is that

P (2) =

 
p(2)00 p(2)01

p(2)10 p(2)10

!
=

✓
p00p00 + p01p01 p00p01 + p01p11
p10p00 + p11p10 p10p01 + p11p11

◆
(17)

P (2) =

0

BBB@

p(2)00 p(2)01 ... p(2)0S

p(2)01 p(2)11 ... p(2)1S
... ... ... ...

p(2)S0 p(2)S1 ... p(2)SS

1

CCCA
(18)
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Applying Absorbing Chain Theory to Ergodic Chains

• To answer certain questions, and especially if we are interested in more detailed behavior of the 
process going to j, we can apply absorbing chain theory to ergodic chains 

• For example, if we want to calculate the mean number of times the process will be in each of the other states 
before reaching j for the first time

• To do this, we make j into an absorbing state → absorbing process with single absorbing state

• Then, the behavior of this process before absorption is exactly the same as the behavior of the original process 
before the first passage time to j

• Provides an alternative way to find the first passage time probabilities: Use the matrix relation  
derived for absorbing chains

• Advantages: Matrix-based, non-recursive



Applying Absorbing Chain Theory to Ergodic Chains: 
First Passage Probabilities – Matrix Equation
To find first passage to state o:

• Adopt the “single absorbing state” notion discussed above, creating a new chain where transient states 
are all states but state o has been removed. Then we want to find the probability that the contamination 
travels through transient states for time steps n-1 and only gets “absorbed” at o at exactly time step n. 
This can be found as follows:

where P(o|o) is the transition matrix P with row and column o removed, and p(o) is the oth column of P with element o 
removed. 

• This expression represents the probability of the contamination bouncing around in the transient states 
(i.e. any state but state o) for n-1 time steps, then at the nth time step going for the first time to o, from 
any connected node. 

• So in absorbing chain notation, we can see the P(o|o) matrix as the Q matrix and the p(o) column vector 
as a one-state R matrix.



Summary
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Definitions and properties

• State space

• Transition matrix

• Classes

Ergodic chains

• Stationary distribution

• First passage probabilities

• Expected first passage times

Absorbing chains

• Absorbing probabilities
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Pass-the-gift problem: Setup

Suppose you are at a dinner party. The host wants to give out a door prize that is 
wrapped in a box. Everyone (including the host) sits around a circular table and each 
person is given a fair coin. Initially the host is holding the box. He/she flips his coin. If it 
is heads, the box is passed to the right; if it is tails, it is passed to the left. The process 
is repeated by whichever guest is holding the box. (Heads, they pass right; tails, they 
pass left.) The game ends when the last person to receive the box finally gets it for the 
first time. That person gets to keep the box as the winner of the game.



Pass-the-gift problem: Questions

1) What is your probability of winning the game? 
• How would you calculate this?

• Does it depend on where you sit?

2) Given you win, what is the expected length of the game? 

• How would you calculate this? 

• Does this depend on where you sit?



Pass-the-gift problem: 
1) Probability of Winning

• How would you calculate this?

Hint: Apply absorbing chain theory to regular chain: 

• Make absorbing states out of Winning or Losing

• Calculate probability of Winning as being absorbed into Winning state 0, Host



Pass-the-gift problem: 
1) Probability of Winning

How do we think about winning and losing?

• Label my position M, the person to my right R, and to my left L

• What’s necessary for me to win?

• Because I’m sandwiched in between R and L, to get to me the gift has 
to first go either to R or to L to get to me (if I’m next to the host, the host 

is R or L). 

• So for me to win, either:

• the gift first travels from the host to R, without visiting me or L, and 

then travels all around the circle from R to L without cycling back 
to reach me, 

• OR,

• The gift first travels from the host to L, without visiting me or R, 

and travels all around the circle from L to R without reaching me.

Labeling M, R, L

Probability of 

traveling first from 

host to R without 

visiting M or L

Probability of 

traveling from R to L 

without visiting me



Pass-the-gift problem: 
1) Probability of Winning

Let’s define these probabilities:

• Let p_RL = probability the gift travels from R to L without reaching 
me 

• By symmetry, p_RL = p_LR , so let’s call this p.

• Also by symmetry, p does not depend on my location, since it is the 
probability going all the way around from wherever I am

• Let q_Ri= probability gift travels first to R without visiting L or me, if 
I am in position i

• Let q_Li = probability gift travels first to L without visiting R or me

Then we have:

Prob(I win, if I’m in position i) = p(q_Ri + q_Li)

Labeling M, R, L

q_Ri:

Probability of 

traveling first from 

host to R without 

visiting M or L

p: 

Probability of 

traveling from R to L 

without visiting me



Pass-the-gift problem: 
1) Probability of Winning

How to calculate p, q_Ri , q_Li ?

We can calculate each of these probabilities by transforming our 
circular chain into an absorbing Markov chain!



Pass-the-gift problem: 
1) Probability of Winning

1a) Absorbing Markov chain to calculate p —

(Recall p is the probability the gift travels from R to L 
without visiting me, or vice versa)

• Create two absorbing states: 
• Win — it reaches everyone before me

• Loose — it reaches me before it has reached 
everyone else

• This is equivalent to the Gambler’s Ruin 
Markov chain, labeling my location as state 0, 
R←→ $1, and L←→ $5 (and the other 
states in between):



Pass-the-gift problem: 
1) Probability of Winning

1a) Absorbing Markov chain to calculate p —

• The probability p of the gift traveling from R to L before 
passing by me is the probability of being absorbed at 
L ($5). Any way of loosing — that is, any way in which I 
am reached first — is equivalent to being absorbed at 
M ($0). 

• Earlier we calculated these probabilities for the 
Gambler’s Ruin problem with a $0 to $5 spread being 
the possible states, and found that the probability of 
being absorbed at 5 starting from position 1, A1,5 = 0.2



Pass-the-gift problem: 
1) Probability of Winning

1b) Absorbing Markov chain to calculate q_Ri and q_Li

• We are interested in the probability that the gift’s path takes it to R before L and me, or takes it to L before R and me

• Since we are only interested in comparing these 2 events — we can create two absorbing states: one at R and one at L

• So we have a chain that goes from R to L, with 5 states total — my location (state M) knocked out because we have 
conditioned on the process going first to R or L before me 

0, Host



Pass-the-gift problem: 
1) Probability of Winning

1b) Absorbing Markov chain to calculate q_RLi and q_LRi

• Let’s say we’re in position 2; then we have the absorbing chain:

• So we are interested in the probability that the process, which starts with the host at 0, goes to L first: A0,4 , or goes to R first: A0,2

• We can calculate both of these absorbing probabilities. But what else do we notice about q_RLi and q_LRi?
A0,4 + A0,2 = 1

à q_Ri + q_Li = 1 for all i !

We didn’t really need a Markov chain for this!



Pass-the-gift problem: 
1) Probability of Winning

Bringing everything together, we have:

Prob(I win, if I’m in position i) = p*(q_Ri + q_Li)

= p*1

For the example with 6 states total, p = 0.2 (calculated in Gambler’s Ruin)

This makes sense: since there are 5 ways to choose i, and p is the same for all i , p = 1 / 5 = 0.2



Pass-the-gift problem: 
2) Expected length of the game given you win

• How would you calculate this?

• Hint: use conditional expectation and apply absorbing chain theory to the ergodic chain



Pass-the-gift problem: 
2) Expected length of the game given you win

We can use the same logic as before for thinking about how I won: 

• The process started by either going first to R or first to L (“segment 1”)

• If the process goes first to R, I win if it goes from R to L (“segment 2”, given R first), then L to me (“segment 
3”, given R first).

• If the process goes first to L, I win if it goes from L to R, then R to me.

0, Host0, Host

Segment 1 Segment 2 Segment 3



Pass-the-gift problem: 
2) Expected length of the game given you win

Then by the total expectation theory, we have:

E[Length of game given I win]  =

P(Host to R) * (E[segment 1 (Host to R)] + E[segment 2 (R to L)] + E[segment 3 (L to M)]) +

P(Host to L) * (E[segment 1 (Host to L)] + E[segment 2 (L to R)] + E[segment 3 (R to M])

Note that:
• P(Host to L) = 1 – P(Host to R) 

• E[segment 2 (R to L)] = E[segment 2 (L to R)] 

• E[segment 3 (L to M)]) = E[segment 3 (R to M])



Pass-the-gift problem: 
2) Expected length of the game given you win

Segment 1: Host to R (or Host to L)

• In part (1b), we have already found the probability that the process goes first to R or L. This is A0,R or A0,L for 
the “knocked-out” chain with 2 absorbing states

• The expected length of Segment 1 is equal to the time to absorption E[T0,R] or E[T0,L]



Pass-the-gift problem: 
2) Expected length of the game given you win

Segment 2: R to L (equivalently, L to R) 

• Given and the process went first to R, and I won, the process has to have gone from R to 
L before me – so we can think of this as a conditional space with a transient chain with my 
position knocked out.

• The expected time to reach L from R is then equal to the expected first passage time to R 
starting from L in this knocked-out chain, E[F*RL]  
• Denoting with * this first passage time, F*ij , because this is not the full chain

0, Host



Pass-the-gift problem: 
2) Expected length of the game given you win

Segment 3: L to me (equivalently, R to me)

• Now that all other states have been reached, and the process is at 
state L, all that needs to happen is for it to move from L to me. This is 
simply the expected first passage time from L to me in the full chain, 
E[FLM], since any of the previous states may be re-traversed



Pass-the-gift problem: 
2) Expected length of the game given you win

Bring it all together using conditional expectation:

E[Length of game given I win]  =

P(Host to R) * (E[segment 1 (Host to R)] + E[segment 2 (R to L)] + E[segment 3 (L to M)]) +

(1- P(Host to R)) * (E[segment 1 (Host to L)] + E[segment 2 (L to R)] + E[segment 3 (R to M])

= P(Host to R) * (E[A0,R] + E[F*R,L] + E[FL,M]) +

(1- P(Host to R)) * (E[A0,L] + E[F*L,R] + E[FR,M]) 

noting that E[F*R,L] = E[F*L,R] and E[FL,M] = E[FR,L]


