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Point Pattern Data: A Historical Perspective

In 1946, R.D. Clarke wrote a report about heavily bombed region of South
London.

481 

AN APPLICATION OF THE POISSON DISTRIBUTION 

BY R. D. CLARKE, F.I.A. 
of the Prudential Assurance Company, Ltd. 

READERS of Lidstone’s Notes on the Poisson frequency distribution (J.I.A. 
Vol. LXXI, p. 284) may be interested in an application of this distribution which 
I recently had occasion to make in the course of a practical investigation.

During the flying-bomb attack on London, frequent assertions were made 
that the points of impact of the bombs tended to be grouped in clusters. It was 
accordingly decided to apply a statistical test to discover whether any support 
could be found for this allegation. 

An area was selected comprising 144 square kilometres of south London 
over which the basic probability function of the distribution was very nearly 
constant, i.e. the theoretical mean density was not subject to material variation 
anywhere within the area examined. The selected area was divided into 576 
squares of ¼ square kilometre each, and a count was made of the numbers of 
squares containing 0, 1, 2, 3, . . . , etc. flying bombs. Over the period considered 
the total number of bombs within the area involved was 537. The expected 
numbers of squares corresponding to the actual numbers yielded by the count 
were then calculated from the Poisson formula : 

where N=576 and m=537/576. 

The result provided a very neat example of conformity to the Poisson law 
and might afford material to future writers of statistical text-books. 

The actual results were as follows: 

No. of flying bombs Expected no. of squares Actual no. of 
per square (Poisson) squares 

0 226.74 229 
1 211.39 211 
2 98.54 93 
3 30.62 35 
4 7.14 7 

5 and over 1.57 1 

576.00 576 

The occurrence of clustering would have been reflected in the above table 
by an excess number of squares containing either a high number of flying 
bombs or none at all, with a deficiency in the intermediate classes. The close- 
ness of fit which in fact appears lends no support to the clustering hypothesis. 

Applying the x2test to the comparison of actual with expected figures, we 
obtain x2 = 1.17. There are 4 degrees of freedom, and the probability of ob- 
taining this or a higher value of x2is .88. 
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Point Pattern Data: A Historical Perspective

I During WWII, Germany launched 1,358 V-2 Rockets at London.

I The V-2 had speed and a trajectory that made it invulnerable to interception,
but its guidance systems were primitive, so it was thought that it couldn’t hit
specific targets.

I After strikes began in 1944, bomb damage maps were interpreted as showing
that impact sites were clustered.

I If the V-2 strikes were clustered, then the guidance systems were more
sophisticated than thought.

I R.D. Clarke set out to analyze these data to determine if the data were
clustered or not.
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Point Pattern Data: A Historical Perspective

I Clarke took a 12 km x 12 km region and sliced it up in to a grid of 576
squares, (144 km2, so each grid square is 1/4 km2).

I For each square, Clark recorded the total number of observed bomb hits.
There were 537 total in the study area.

I He then recorded the number of squares with k = 1, 2, 3, ... hits.

I The expected number of squares with k hits was derived from the Poisson

distribution
∑n
k=1

e−λλk

k! where λ = 537
576 and n = 576.
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Point Pattern Data: A Historical Perspective

I Doing the cross tabulation of observed vs expected, he found χ2 = 1.17
which with 4 degrees of freedom (n-1 groups, the 0 group was excluded) has
p-value=0.88.

I The occurrence of clustering would have been reflected in an excess of
squares with a high number of bombs or none at all.

I The insignificant p-value and the closeness of fit of the data to the Poisson
distribution indicates that the V-2 impact sites were random rather than
clustered.
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Point Pattern Data

I Goal in point pattern data analysis is to assess whether there is a spatial
pattern in occurrences of an event

I Distinguish between a point and an event location

I In geostatistics our points were locations in a domain that we made a
measurement. These points make up a set of spatial random variables for
which we wanted to determine the spatial relationships (via the covariance
function)

I Point patterns consist of event locations where we are concerned with the
presence/absence of an event rather than the value of the measurement at a
point.

I We ask the question: are the events that we observe in our domain from a
completely random spatial process or are they exhibiting some type of pattern
or clustering?

I For point pattern analysis in R we use the package spatstat.
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Point Pattern Data: Examples

Here we have the points of locations of three types of trees, each in a rectangular
area.
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Point Pattern Data: Quadrant Count

A simple quadrant count of the Finnpines points.
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Point Pattern Data

Questions of interest are:
I Are points closer together than they would be by chance?

I Are the points more regularly spaced than they would be by chance?

I What model might reproduce our observed pattern?

Comparing the Finpines data to a spatially random process and a regular pattern:
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Point Pattern Data

Point pattern notation:
I Spatial location in (x,y) denoted as s.

I Y (s) represents the presence or absence of Y where Y (s) = 1 if there is an
observed case at location s, andY (s) = 0 otherwise.

I Spatial domain of observed cases: D, D = {s;Y (s) = 1}.
I The null hypothesis: no spatial pattern (complete spatial randomness).

I Find a statistic to test whether the data is clustered, or regular.

I Develop a model to generate spatial pattern (PCP, IPP, Cox, SIP).
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Point Pattern Data: Complete Spatial Randomness

Spatial Randomness
I Typical terms that are used are spatial randomness, random pattern, at

random or by chance.

I Complete spatial randomness (CSR): events are uniformly distributed across
a domain D and are independent of each other.

I CSR means an event is equally likely to occur at any location or region within
D.

I Testing for CSR is the most basic test which can be performed on point
pattern data.
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Point Pattern Data: Complete Spatial Randomness

Here are 4 realizations of a random uniform process (CSR) in a 1x1 box
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Point Pattern Data: Complete Spatial Randomness

I A point process which is CSR is defined as being a stationary homogeneous
spatial Poisson point process (HPP).

I The HPP is the building block of spatial point processes statistical analysis:
It represents the simplest possible stochastic mechanism for the generation of
spatial point patterns, and in applications is used as an idealized standard of
CSR that, if strictly unattainable in practice, sometimes provides a useful
approximate description of an observed pattern.
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Homogeneous Poisson Process

Defining the homogeneous Poisson process (HPP)
I Homogeneity means that the intensity is constant across the study area.

Homogeneity is similar to stationarity and isotropy for geostatistical data.

I In a HPP, the intensity, λ, is a constant equal to the expected number of
events per unit area: λ = n

|D| .

I Let N be the number of events occurring in a region D. N is a random
variable

I The pdf for N is the Poisson distribution:

P (N = k) =
e−λ|D|(λ|D|)k

k!
, k = 0, 1, 2, ...

I E[N ] = λ|D|
I σ2 = λ|D|
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Homogeneous Poisson Process: Postulates

The HPP follows from the following mathematical postulates:
I Independence: The number of events in non-overlapping regions are

statistically independent.

I Stationarity:

lim
|A|→0

P[exactly one event in A]

|A|
= λ > 0

This implies that the probability of a single event depends only on the size of the
area considered (is a constant independent of the location of the region A within
a larger region D), and that as the area goes to 0 so does the probability.

I Small area probabilities:

lim
|A|→0

P[two or more events in A]

|A|
= 0

This implies that the probability of a two or more events in the same location is 0.
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Homogeneous Poisson Process: Properties

Some properties of Homogeneous Poisson Processes:
I The Poisson distribution allows the total number of observed events to vary

from realization to realization while maintaining a fixed but unknown number
of events per unit area.

I Under a HPP, the location of one point in space does not affect the
probabilities of other points appearing nearby. The intensity of the point
process in area A is a constant λ > 0.
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Homogeneous Poisson Process: Properties

Property: Independence of superimposed or pruned processes
I Superposition of independent Poissons: suppose N1(A) and N2(A) are

independent Poisson random variables with rates λN 1 and λN 2, respectively.
Then N1(A) +N2(A) is Poisson with rate λN 1 + λN 2 .

I Pruning of Poissons: Let N(A) be a Poisson process with rate λ and
assume that each arrival of N(A) is assigned to a process N1(A) with
probability p and to a process N2(A) with a probability 1− p, and all
assignments are independent. Then N1(A) and N2(A) are independent
Poisson processes with rates λp and λ(1− p).
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Homogeneous Poisson Process: Properties

Property: Independence of superimposed or pruned processes
These facts are important for a few reasons:

I They allow us to define cluster processes

I They allow us to define marked Poisson processes: Poisson processes with
different sorts of points. There are two equivalent ways to construct marked
Poisson processes:

1. Pruning: Drop all the points down according to the overall point process, then
independently assign each point a marking.

2. Alternatively, for each type of mark we can drop down an independent Poisson
point process.

3. These two models are equivalent by the superposition/pruning above.
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Homogeneous Poisson Process: Properties

Conditional property: Given a fixed number of points, these
are iid uniformly distributed
I In 2-dimensional space or one-dimensional, what happens to λ once the

number of Poisson entities has been fixed?

I They vanish, and the unordered Poisson entities are iid uniformly over the
area of interest.

I In other words, given that there are N points of the Poisson process in area
D, these N points are conditionally independent and uniformly distributed in
D.

I It’s a little counter-intuitive that there exists no process parameter in this
instance, but we can show why:
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Homogeneous Poisson Process: Conditionality property

Proof: Uniform distribution given a fixed number of points
Let’s consider a simple case: A single point in a line
I Given that a single arrival occurred in a line segment [0, x], we can show that

the pdf of the location is uniform over [0, x].

I Consider an interval [a, b] within segment [0, x]

I Let l = b− a
I Let X be the location of the point, and

I let E be the event that a single point occurs in [0, x] (this is the “given”
information).

I The probability for the location of X, given E, is then

P (X ∈ [a, b]|E) =
P (X ∈ [a, b], E)

P (E)
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Homogeneous Poisson Process: Conditionality property

Proof: Uniform distribution given a fixed number of points

I P (X ∈ [a, b], E) is the same as the probability that the Poisson process has
exactly one point within the segment [a, b] (of length l) ∗ the probability that
the process has zero arrivals in [0, a] and zero arrivals in [b, x]. These two
intervals combine to a total length of x–l (this is taking a superimposed
process).

I So we have (plugging into the Poisson pdf):

P (X ∈ [a, b]|E) =
P (N = 1, A = l)P (N = 0, A = x− l)

P (N = 1, A = l)

=
(λle−λl)(e−λ(x−l))

(λx)(e−λx)

=
l

x
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Homogeneous Poisson Process: Conditionality property

Proof: Uniform distribution given a fixed number of points

I Recall that the uniform pdf is fu(X) = 1
x for X ∈ [0, x]

I We can therefore see that the result l
x is the same as the probability that a

point ends up in interval l according to a uniform distribution
I This argument can be extended to a general case with any number of points,

and 2 dimensional space.
I We will see this in the lab:

100 uniform points HPP intensity = 100, unit square
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Homogeneous Poisson Process: Area proportionality

Property: Expected number of points is proportional to the
area
I For any sub-region D of two-dimensional space, the expected number of

points in D is proportional to the area of D: E[N(X ∧D)] = λ|D|
I To drive in intuition on this property, we use this relationship to simulate the

constant π
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Homogeneous Poisson Process: Area proportionality

Application of uniformity intensity: Simulating π
I Generate a HPP in a square

I Inscribe a circle within that square

I Let n = total number of points

I Let m = number of points that land within circle

I Then we have, by the area proportionality property: m
n = πr2

s2

I So, our estimator for π is: π̂ = ms2

nr2

I Evaluate this in lab.
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Point Pattern Data: Tests of CSR

Testing for CSR Most analyses begin with a test of CSR, and there are
several good reasons for this.

I A pattern for which CSR is not rejected scarcely merits any further formal
statistical analysis.

I Rather than because rejection of CSR is of intrinsic interest, tests are used as
a means of exploring a set of data, for example aiding in the formulation of
hypotheses concerning pattern and its genesis.

I CSR acts as a dividing hypothesis to distinguish between patterns which are
broadly classifiable as clustered or regular.

random more clustered more regular
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Point Pattern Data: Tests of CSR

Exploring CSR: Nearest Neighbors
I For the ith Poisson point, let Di be the distance to its nearest neighbor.

I Construct a circle of radius r around i

I Let G(r) = P (Di ≤ r), the CDF for the probability that the nearest neighbor
distance is less than r.

r

Random 
Point iNearest Neighbor dists
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Point Pattern Data: Tests of CSR

Exploring CSR: Nearest Neighbors
I We can derive this CDF G(r) = P (Di ≤ r):

G(r) =P (Di ≤ r) = 1− P (Di > r)

=1− P (no Poisson entities within circle of radius r)

=1− e−λπr
2
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Point Pattern Data: Tests of CSR

Exploring CSR: Nearest Neighbors
Evaluating CSR based on nearest neighbors:
I Let Ĝ(r) be the proportion of observed points with nearest neighbors less

than r .
I The value of Ĝ(r) for any distance r tells what fraction of all nearest

neighbor distances in the pattern are less than that distance.
I Compare Ĝ(r) with the exact G(r) = 1− e−λπr2

I Interpretation: If Ĝ(r) is much greater than G(r), that means there is
clustering, whereas if it is smaller that means there is regularity. Why?

M. Franklin and A. Horn (USC) PM569 November 8, 2019 28 / 58



Point Pattern Data: Tests of CSR

Testing for homogeneous CSR using Monte Carlo
I Many tests of CSR use Monte Carlo methods.

I Compare the observed value of a test statistic to its distribution under the
null hypothesis of CSR.

I Simulate a large number of CSR processes and compare the test statistic
from Nsim to test statistic from observed.

I Also note, edge effects near the boundary of a region may need to be taken
into account. (For example, if a point is less than distance r to the boundary,
then this affects the probability that there is another point within radius r of
it).
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Point Pattern Data: Tests of CSR

Testing for homogeneous CSR: Ripley’s K
I Ripley’s K, K(h) = λ−1E(N0(h))

I Where N0(h) is the number of events within a distance h of an arbitrary
event

I K(h) tests the expected number of events within distance h from an
arbitrary event (excluding the chosen event itself) divided by the average
number of events per unit area

I K(h) is equivalent to showing the variance of the number of events occurring
in subregion A (Ripley 1977) so is a second order property of the point
process.
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Point Pattern Data: Tests of CSR

Testing for homogeneous CSR: Ripley’s K
I Ripley’s K, K(h) = λ−1E(N0(h))

I Under CSR K(h) = πh2, the area of a circle of radius h
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Point Pattern Data: Tests of CSR

Testing for homogeneous CSR: Ripley’s K
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Point Pattern Data: Tests of CSR

Testing for homogeneous CSR: Ripley’s K
I For a process that is more regular than CSR we expect fewer events within

distance h of a randomly chosen event

I For a process that is more clustered than CSR we expect more events within
distance h of a randomly chosen event

I Estimating K(h):

K̂(h) = λ̂−1
1

N

∑
i

∑
j

δ(d(i, j) < h)

I i 6= j and d(i, j) is the Euclidean distance between events and
δ(d(i, j) < h) = 1 if d(i, j) < h and 0 otherwise
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Point Pattern Data: Tests of CSR

Testing for homogeneous CSR: Ripley’s K
I There is an alternate K̂(h) estimator that corrects for edges (boundaries of

the region)

I Want to prevent including events that occur outside the boundary but within
distance h

I Estimating K(h) accounting for boundaries:

K̂ec(h) = λ̂−1
1

N

∑
i

∑
j

wijδ(d(i, j) < h)

I where wij = 1 if the distance between i and j is less than the distance
between event i and the boundary of the region
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Point Pattern Data: Tests of CSR

I Using the K(h) function and determining p-values to test CSR.

I Plot K(h); under CSR K(h) = πh2 is a parabola.

I (K(h)/π)1/2 = h, so plot h vs (K̂(h)ec/π)
1/2 − h.

I Under CSR, (K̂(h)ec/π)
1/2 − h = 0.

I Departures from the horizontal line that defines CSR indicate clustering or
regularity

I Deviations above the horizontal line indicate clustering because there are
more events within distance h than expected.

I Deviations below the horizontal line indicate regularity because there are
fewer events within distance h than expected.
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Point Pattern Data: Tests of CSR

To test CSR based on Riply’s K, use Monte Carlo method:

I Simulate k-1 samples (for example, k=100) of n points from a CSR process
and compute K̂2(h), ..., K̂n(h).

I For each distance h find the upper bound U(h)=maxi K̂i(h).

I For each distance h find the lower bound L(h)=mini K̂i(h).

I For each distance find K̂1(h) from data.

I Plot distance vs K̂i(h)− πh2.

I Often plot distance (h) vs L̂(h)− h where L̂(h) = (K̂(h)ec/π)
1/2 for better

visualization.

I Under CSR, the expected value of L̂(h)− h = 0, so we expect a CSR line to
be around zero.
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Point Pattern Data: Tests of CSR

Testing for homogeneous CSR: Ripley’s K
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Point Pattern Data: Tests of CSR

Testing for homogeneous CSR: Ripley’s K
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Point Pattern Data: Tests of CSR: Ripley’s K

Test statistic

I Order the simulated values K̂2(h), ..., K̂n(h), ie for i=1,...,n
K̂(1)(h) ≥ ... ≥ K̂(n)(h)

I Let K̂(k)(h) be the kth largest among K̂i(h)

I For each h, the probability that K̂1(h) is lower than L(h) or higher than
U(h) is n−1, i.e.

P (K̂1(h) = K̂(k)(h)) = n−1

I We reject the null hypothesis on the basis that K̂1(h) ranks kth largest or
higher. This gives us an exact one-sided test of size k/n
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Point Pattern Data: Tests of CSR

I Can also test for CSR based on inter-event distances

I We let H(h) be the theoretical distribution of inter-event distances,
H(h) = P (H ≤ h)

I We estimate H(h) by the empirical distribution function:

Ĥ(h) =
number of paired distances less than h

total number of pairs
=

#(hi,j ≤ h)
0.5n(n− 1)
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Point Pattern Data: Tests of CSR

I We know the theoretical H(h) for inter-event distances hi,j if we have an
area D which is square or circular.

I Example: Bartlett (1964) described H(h) for a unit circle as

H(h) = 1 + π−1[2(h2 − 1) cos−1(h/2)− h(1 + h2/2)
√
(1− h2/4)]

I for 0 ≤ h ≤ 2
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Point Pattern Data: Tests of CSR

I A visual test is to plot Ĥ(h) vs H(h)

I As with Ripley’s K we need the distribution of our statistic Ĥ(h) under CSR

I Simulate k-1 samples of n points from CSR process and compute
Ĥ1(h), ..., Ĥs(h)

I For each inter-event distance h find the upper and lower bounds of Ĥ(h)

I ĤU (h) = maxiĤi(h) and ĤL(h) = miniĤi(h)
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Point Pattern Data: Tests of CSR

I Using nearest neighbour distances, let G(h) be the theoretical distribution of
NN distances

I Let hi be the distance from the ith event to the nearest other event in D

I Our estimate of G(h) is

Ĝ(h) =
#(hi ≤ h)

n

I Now we need to test our statistic vs the statistic under CSR
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Point Pattern Data: Tests of CSR

I Approximation of G(h):

I For any event in our area D, under CSR we have
P (event i is within distance h from j) = πh2|D|−1 where area is represented
by |D|

I The approximate distribution function of G(h) is
G(h) ≈ 1− (1− πh2|D|−1)n−1

I And when you have a large n, G(h) ≈ 1− exp(−λπh2) where λ = n/|D| is
the intensity as we saw before

I Compare Ĝ(h) to G(h), find envelope by simulation ĜU (h) and ĜL(h)

I Plot G(h) vs Ĝ(h)
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Point Pattern Data: Inhomogeneous Poisson Process

I A generalization of the HPP is the Inhomogeneous (heterogeneous) Poisson
Process (IPP). The IPP occurs when the intensity λ is not constant over the
region.

I Many cases homogeneity in intensity is not realistic, for example the locations
of trees in a forest may be irregular due to geographic features such as soil,
rock, slope or other terrain irregularities.

I In the case of IPP, the intensity is a function that varies spatially, λ(s).

I The IPP does not define cluster process, but rather a
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Point Pattern Data: Inhomogeneous Poisson Process

Inhomogeneous Poisson process
I We can estimate the intensity function in different ways: parametrically by

defining a specific function or non-parametrically using kernel smoothing

λ̂(s) =
1

h2

∑
i

κ(
||s− si||

h
)/q(||s||)

Where κ(s) is a kernel function and q||s|| is a boundary correction. The distance
h is our bandwidth for smoothing
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Point Pattern Data: Inhomogeneous Poisson Process

Inhomogeneous Poisson process
I There are various kernel functions, but a quadratic function is often used:

κ(s) =
3

π
(1− ||s||2)2
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Point Pattern Data

Inhomogeneous Poisson Process
I Example of varying intensity function λ(s) could be that intensity varies with

location due to environmental heterogeneity

I Example if D i a square unit and N(D)=100

I λ(x, y) = 100 ∗ exp(10x− 5y)

I λ(x, y) = 100 ∗ exp(−10x+ 5y)

M. Franklin and A. Horn (USC) PM569 November 8, 2019 48 / 58



Point Pattern Data

Inhomogeneous Poisson Process
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Point Pattern Data

Inhomogeneous Poisson Process
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Point Pattern Data

Inhomogeneous Poisson Process
I Or we might see that cases of respiratory disease differ with respect to

distance from a point source of environmental pollutions0

λ(s) = λ0(s)f(||s− s0||, θ)

I Where λ0(s) models the variation in population density

I f(u,θ) models how the impact of the source varies with distance u (s-s0) and
angle θ

M. Franklin and A. Horn (USC) PM569 November 8, 2019 51 / 58



Point Pattern Data: Poisson Cluster Process

Poisson cluster process
I A spatial point process where each event belongs to a cluster

I There is a parent event that produces a random number of offspring

I Parent events are usually a realization of an Poisson process with intensity
λ(s)

I We have i parents, and each parent produces a random number of offspring,
Oi

I The Oi are distributed within hi of the parent and follow a bivariate
probability distribution
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Point Pattern Data: Poisson Cluster Process

Poisson cluster process
I Can have homogeneous cluster processes where the intensity of the offspring

around a parent is constant λ

I Or an inhomogeneous cluster process where the intensity of the offspring
around a parent is not constant across domain λ(s)

I Parent events are usually a realization of an inhomogeneous Poisson process
with intensity λ(s) distribution
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Point Pattern Data: Poisson Cluster Process

Poisson cluster process
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Point Pattern Data

Poisson cluster process
I Left, we have a unit square as our D with intensity of parents = 25 and

number of offspring = 4 and variation around parents = 0.00025

I Right, we have a unit square as our D with intensity of parents = 25 and
number of offspring = 4 and variation around parents = 0.005
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Point Pattern Data

Poisson cluster process
I Example of PCP: distribution of insect larvae or tree seeds

I Neyman Scott assumptions of homogeneous Poisson cluster process:

Parent events are realizations of a Poisson process with intensity ρ
Each parent i produces a random number of offspring Si and the S − i are iid
The positions of offspring wrt the parent are iid with bivariate pdf
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Point Pattern Data

Poisson cluster process
I Isotropy in our pdf means it must be radially symmetric

I Example is the radially symmetric Gaussian distribution

h(x1, x2) =
1

2πσ2
exp(−x

2
1 + x22
2σ2

)

I where σ2 are the offspring
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Point Pattern Data

Poisson cluster process
I Neyman Scott assumptions of homogeneous Poisson cluster process

I Use ρ for intensity of parents, E(s) = µ is the expected number of offspring

I Then the overall intensity of a clustered process is λ = ρµ (1st order
intensity)

I Need second order properties of this process to derive K(h) under PCP

I Second order intensity λ2 = λ2 + ρE[S(S − 1)]h2(si − sj)
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