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Point Pattern Data

Review of point processes
I Testing for CSR:

Often want to adjust for edge effects.
We test for CSR with Ripley’s K, which involves a search window with
bandwidth h (or radius r).
We test for for CSR based on nearest-neighbour distances with G(h).
We test for CSR based on inter-event distances being less than a threshold δ
with H(h).

I The types of spatial processes where the Poisson processes is the building
block are:

Homogeneous Poisson process (constant intensity), used for testing CSR.
Inhomogeneous Poisson process (intensity varies across domain), used for
testing CSR.
Poisson Cluster process (intensity varies for parents and/or children forming
clusters), used for testing clustered patterns.
Simple inhibition processes, Markovian processes (Strauss and pairwise
interaction), used for testing regular patterns.
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Point Pattern Data

Homogeneous Poisson Process (CSR)

intensity = 100, unit square
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intensity = 1, 10 x 10 square
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Point Pattern Data

Inhomogeneous Poisson Process
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Point Pattern Data

Inhomogeneous Poisson Process
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Point Pattern Data

Poisson Clustered Process
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Point Pattern Data

Simple Inhibition Process

SIP, distance 0.05
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Point Pattern Data: Inhomogeneous Poisson Process

I A generalization of the HPP is the Inhomogeneous (heterogeneous) Poisson
Process (IPP). The IPP occurs when the intensity λ is not constant over the
region.

I Many cases homogeneity in intensity is not realistic, for example the locations
of trees in a forest may be irregular due to geographic features such as soil,
rock, slope or other terrain irregularities.

I In the case of IPP, the intensity is a function that varies spatially, λ(s).

I The IPP does not define cluster process, but rather a
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Point Pattern Data: Inhomogeneous Poisson Process

I Inhomogeneous Point Processes: intensity, λ, is not constant. It is a function
λ(s) of the locations S ∈ D.

I Properties of a spatial point process in terms of the intensity function.

First order properties are described by the intensity function.

λ(s) = lim
|ds|→0

E[N(ds)]

|ds|

I The first order properties are the mean properties of the random process that
describe the expcted density of events in any location of the region.

I The number of events occurring within a finite region D is a random variable
following a Poisson distribution with mean

∫
D
λ(s)ds

I given the total number of events N occuring in D, the N events represent an
independent random sample of N locations with the probability of sampling a
particular point S proportional to λ(s).
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Point Pattern Data: Inhomogeneous Poisson Process

I For an inhomogeneous Poisson process, λ(s) is closely related to the density
of events over the domain.

I Density estimators provide an estimate of intensity (e.g. kernel density).
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Point Pattern Data: Inhomogeneous Poisson Process

I We can estimate the intensity function in different ways: parametrically by
defining a specific function or non-parametrically using kernel smoothing.

I A parametric form is a function of x and y.

I A non-parametric form is:

λ̂(s) =
1

h2

∑
i

κ(
||s− si||

h
)/q(||s||)

Where κ(s) is a kernel function and q||s|| is a boundary correction. The distance
h is our bandwidth for smoothing
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Point Pattern Data: Inhomogeneous Poisson Process

I There are various kernel functions, but a quadratic function is often used:

κ(s) =
3

π
(1− ||s||2)2
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Point Pattern Data: Inhomogeneous Poisson Process

Parametric Intensity
I Example of varying intensity function λ(s) could be that intensity varies with

location due to environmental heterogeneity

I Example if D i a square unit and N(D)=100

I λ(x, y) = 100 ∗ exp(10x− 5y)

I λ(x, y) = 100 ∗ exp(−10x+ 5y)
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Point Pattern Data: Inhomogeneous Poisson Process

Parametric Intensity
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Point Pattern Data: Inhomogeneous Poisson Process

Parametric Intensity
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Point Pattern Data: Inhomogeneous Poisson Process

Parametric Intensity
I Or we might see that cases of respiratory disease differ with respect to

distance from a point source of environmental pollutions0

λ(s) = λ0(s)f(||s− s0||, θ)

I Where λ0(s) models the variation in population density

I f(u,θ) models how the impact of the source varies with distance u (s-s0) and
angle θ
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Point Pattern Data: Inhomogeneous Poisson Process

Non-Parametric Intensity Inhomogeneous Poisson Process
intensity function

11/18/13 Applied Spatial Statistics for Public Health Data

site.ebrary.com/lib/uscisd/docPrint.action?encrypted=9135ebcadb14947800f12f90589813962ca191d17b03e31250367d817abf6fdd1258e011915a925b68196b7610… 1/1

Waller,  Lance  A.;;  Gotway,  Carol  A..  Applied  Spatial  Statistics  for  Public  Health  Data.

Hoboken,  NJ,  USA:  Wiley,  2004.  p  128.

http://site.ebrary.com/lib/uscisd/Doc?id=10114139&ppg=148

Copyright  ©  2004.  Wiley.  All  rights  reserved.  

May  not  be  reproduced  in  any  form  without  permission  from  the  publisher,  except  fair  uses  permitted  under  U.S.  or

applicable  copyright  law.
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Point Pattern Data: Inhomogeneous Poisson Process

I The inhomogeneous Poisson process shows lack of events between the modes

I More events around the mode (16,14) and a narrower peaked area around
(3,3)

I Collections of events suggest areas of higher intensity

I In order to do kernel estimation we need to choose:

the kernel type (e.g. Gaussian)
the bandwidth (e.g. radius of the area where smoothing is applied). Smaller
bandwidths produce more localized densities.
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Point Pattern Data: Inhomogeneous Poisson Process

Several R packages produce kernel estimation: density() in base R, ksmooth()
in spatstat, kernel2d() in splancs.
Example: finpines data
plot(density(finpines,1))
points(finpines,pch=19,cex=0.1)
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Point Pattern Data: Inhomogeneous Poisson Process

plot(density(finpines,10))
points(finpines,pch=19,cex=0.1)
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Point Pattern Data: Inhomogeneous Poisson Process

I First order properties describe the mean of the process (mean number of
events per unit area)

I Second order properties are described by the inter-relationships between
events (e.g. variance/covariance between locations)

I The second order intensity function can be written (for two locations s and
u):

λ(s, u) = lim
|ds|,|du|→0

E[N(ds)N(du)]

|ds||du|
I Under IPP there are heterogeneities in the intensity function and individual

event locations remain independent of one another.
I This allows us to describe how often events occur within a given distance of

other events
I The second order properties are similar to variance/covariance of the process
I Allows us to summarize the spatial dependence between events over a wide

range of possible spatial scales
I The Ripley’s K function is a second-order statistic
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Point Pattern Data

I Recall the K function for distance h (or radius r):

K(h) =
E[# events within h of randomly chosen event]

λ

I The second order properties gives us insight into the global aspects of the
point pattern

I Are there general patterns of clustering or regularity with respect to CSR or
another pattern?
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Point Pattern Data

I Simple stochastic models for point patterns do not have tractable
distributions.

I To test models against data we use Monte Carlo tests (simulation-based).

I Monte Carlo steps:

Let u1 be the observed value of a statistic U
Let ui be the values of the statistic U generated by independent random
sampling from the distribution of U under a simple hypothesis H0 (the null
hypothesis)
Let u(j) denote the jth largest among the ui, i = 1, ..., s
Then, under H0, P{u1 = u(j)} = s−1, j = 1, ..., s and rejection of H0 on the
basis that u1 ranks kth largest or higher gives an exact one sided test of size
k/s
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Point Pattern Data

I Monte Carlo methods are not precisely replicable since they rely on simulated
data.

I An independent set of simulated realizations will result in a different
estimated p-value than the first set of realizations.

I The larger number of simulations the more stable the resulting estimates.

I We use Monte Carlo methods to test whether our observations are a CSR
with homogeneous or inhomogeneous Poisson process, cluster process, regular
process.
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Point Pattern Data: Poisson Cluster Process

Poisson cluster process
I A spatial point process where each event belongs to a cluster

I There is a parent event that produces a random number of offspring

I Parent events are usually a realization of an Poisson process with intensity
λ(s)

I We have i parents, and each parent produces a random number of offspring,
Oi

I The Oi are distributed within hi of the parent and follow a bivariate
probability distribution
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Point Pattern Data: Poisson Cluster Process

Poisson cluster process
I Can have homogeneous cluster processes where the intensity of the offspring

around a parent is constant λ

I Or an inhomogeneous cluster process where the intensity of the offspring
around a parent is not constant across domain λ(s)

I Parent events are usually a realization of an inhomogeneous Poisson process
with intensity λ(s) distribution
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Point Pattern Data: Poisson Cluster Process

Poisson cluster process
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Point Pattern Data

Poisson cluster process
I Left, we have a unit square as our D with intensity of parents = 25 and

number of offspring = 4 and variation around parents = 0.00025

I Right, we have a unit square as our D with intensity of parents = 25 and
number of offspring = 4 and variation around parents = 0.005
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Point Pattern Data

Poisson cluster process
I Example of PCP: distribution of insect larvae or tree seeds

I Neyman Scott assumptions of homogeneous Poisson cluster process:

Parent events are realizations of a Poisson process with intensity ρ
Each parent i produces a random number of offspring Si and the S − i are iid
The positions of offspring wrt the parent are iid with bivariate pdf
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Point Pattern Data

Poisson cluster process
I Isotropy in our pdf means it must be radially symmetric

I Example is the radially symmetric Gaussian distribution

h(x1, x2) =
1

2πσ2
exp(−x

2
1 + x22
2σ2

)

I where σ2 are the offspring
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Point Pattern Data

Poisson cluster process
I Neyman Scott assumptions of homogeneous Poisson cluster process

I Use ρ for intensity of parents, E(s) = µ is the expected number of offspring

I Then the overall intensity of a clustered process is λ = ρµ (1st order
intensity)

I Need second order properties of this process to derive K(h) under PCP

I Second order intensity λ2 = λ2 + ρE[S(S − 1)]h2(si − sj)
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Point Pattern Data

Cox processes
I Spatial clustering with a spatially varying intensity function of the

inhomogeneous Poisson process

I Varying λ(x) and λ(x) is a realization of a stochastic process

I Property 1) it is a non-negative valued stochastic process

{Λ(x);x ∈ <2}

I Property 2) the events for an inhomogenous Poisson process (IPP) with
intensity function λ(x)

{Λ(x) = λ(x);x ∈ <2}

M. Franklin (USC) PM569 November 15, 2019 32 / 61



Point Pattern Data

Cox processes
I The Cox process is homogeneous iff Λ(x)is homogeneous:

E[Λ(x)] = λ∀x

E[Λ(x)Λ(x+ h)]depends only on||h||
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Point Pattern Data

Cox processes
I The Cox process is linked to the clustered Poisson process

I Aggregation into clusters may be a result of environmental heterogeneity

I Clusters of events in regions of high intensity

I Cox processes are considered doubly stochastic, intensity is heterogeneous
but also may be a random quantity

I λ(x) can be drawn from some probability distribution of possible intensity
functions over the study area
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Point Pattern Data

Cox processes

Λ(x) = µ

∞∑
i=1

h(x−Xi)

I µ > 0, h(·) is a bivariate pdf, and Xi are points from a Poisson process

I The Cox process can also be thought of as a specific case of a Poisson cluster
process with number of offspring having intensity µ and dispersion around
parents with pdf h(·)
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Point Pattern Data

Cox processes
I The log-Gaussian Cox process is another form of the Cox process

Λ(x) = exp(Z(x))

I Z(x) is a Gaussian process.

I If Z(x) is stationary with mean µ, variance σ2 and correlation ρ(h):

λ = exp(µ+ 0.5σ2)
γ(h) = exp(σρ(h))

I The log-Gaussian Cox process can be fit in R spatstat with the rLGCP()
function
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Point Pattern Data

Fitting point process models
I Given our set of observed point events {x1, ...xn} in region D we wish to fit

a model (which is stationary and isotropic)

I Model fitting is approached by estimating the parameters of the particular
process

Example: fitting a parametric form of the intensity of an inhomogeneous
Poisson process
Example: fitting the parameters ρ, µ and σ2 of a clustered process

λ(x, y) = exp(θ0 + θ1x+ θ2y)

I We use familiar fitting methods: Least squares, Maximum Likelihood and
non-parametric methods.
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Point Pattern Data

Fitting point process models: Inhomogeneous PP
I In spatstat we require the intensity function λ(x, y) to be loglinear in the θ

parameters

log(λ(x, y)) = θS(x, y) where S(x, y) is a function of the location referenced
by x,y coordinates

I In practice S(x, y) can be a function of the spatial coordinates, an observed
covariate, or both.
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Point Pattern Data

Fitting point process models: Least Squares
I We start with K(h) and the estimator K̂(h) (or L, or G, or H) for parameter

fitting

I This is useful when the mathematical form of K(h) is known either explicitly
or as an integral (which is true for some point processes)

I If K(h) is not known we use the simulated realizations

I Example, to fit a homogeneous Poisson cluster process we have parameters
θ = (ρ, σ) and the Ripley’s K function is:

K(h, θ) = πh2 +
1

ρ
(1− exp(−h2/(4σ2)))

I And we estimate K̂(h) from the data
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Point Pattern Data

Fitting point process models: Least Squares
I Given the theoretical K-function and the estimator K̂(h) we minimize the

deviance:

D(θ) =

∫ h0

0

[(K̂(h))c − (K(h, θ))c]2dh

I Where h0 is the maximum distance which is typically chosen as 1/3 to 1/2 of
the width of a rectangular region, and c is the power transformation

I The power transformation controls the sampling fluctuations in K̂(h) which

can increase with h and have influence on θ̂ (i.e. it is a variance stabilizer)

I Examples of c are c=0.5 for a pattern that is not too different from CSR,
c=0.25 for cluster patters. However, choose a variety of c values in practice
in order to see how sensitive the results are
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Point Pattern Data

Fitting point process models: Least Squares Estimation Steps
1. Compute the edge corrected K̂(h)

K̂(h) =
|A|
n2

n∑
i=1

∑
j 6=i

I(hi,j ≤ h)

2. Choose a theoretical model for K(h, θ) where θ are the parameters of the
model

3. Find θ̂ that minimizes the deviance for a given c

D(θ) =

∫ h0

0

[(K̂(h))c − (K(h, θ))c]2dh
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Point Pattern Data

Fitting point process models: Least Squares Estimation
I When K(h, θ) is unknown because there is no closed form, use the simulated

method (for s simulations):

K̄s(h, θ) =
1

n

s∑
i=1

K̂i(h, θ)

I Finding K̄s(h, θ) for each value of θ can be prohibitive computationally

1. Start with a small number of simulations, s
2. Find a first approximation of θ̂
3. Repeat with a larger value for s
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Point Pattern Data

Fitting point process models: Least Squares Estimation Steps
I A weighted version of the deviance, shown to have asymptotic properties

(consistency and asymptotic normality), is often used:

D(θ) =

∫ h0

0

w(h)[(K̂(h))c − (K(h, θ))c]2dh

I The weight w(h) is a weight on the distance also controls the variance

I When c = 0.5 and w(h) = 1 we have the Poisson cluster process

I See Guam and Sherman, J R Stat Soc (2007) for asymptotic properties
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Point Pattern Data

Fitting point process models: Least Squares Estimation
I In R spatstat, cluster or Cox point process models are fit with least squares

estimation through the kppm function with the method="mincontrast"

option

I To fit a log-Gaussian Cox point process, use the function lgcp.estK

M. Franklin (USC) PM569 November 15, 2019 44 / 61



Point Pattern Data

Fitting point process models: Maximum Likelihood
I To fit inhomogeneous Poisson and pairwise interaction processes we need to

rely on likelihood methods

I Recall for the inhomogeneous Poisson process:

N(D) is Poisson with mean
∫
D
λ(x)dx

Conditional on N(D) = n, the n events in A form an independent random
sample from D with a probability distribution function proportional to λ(x)

I We can define the process based on its conditional intensity

I Namely, the conditional probability of finding a point of the process inside an
infinitesimal neighbourhood du of the location u given the complete point
pattern x is λ(u, x)du
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Point Pattern Data

Fitting point process models: Conditional Intensity
I For example, CSR has conditional intensity λ(u, x) = λ

I The IPP has conditional intensity λ(u, x) = λ(u)

I Sometimes the IPP trend is denoted as β(u) and indicates ”spatial trend”

I The Strauss process has conditional intensity λ(u, x) = βnγp where β is the
intensity, γ is the interaction parameter, and p is the number of points of x
that lie within a distance δ of u (i.e. pairs of neighbours)

I For example, the Strauss process with γ < 1 dependence between points is
reflected in the fact that the conditional probability of finding a point of the
process at the location u is reduced if other points of the process are present
within a distance δ. And when γ = 0, the conditional probability of finding a
point at u is zero if there are any other points of the process within a
distance δ of this location.
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Point Pattern Data

Fitting point process models: Pseudolikelihood
I Because maximum likelihood is difficult for point process models, the log of

the pseudolikelihood is maximized, using the conditional intensity

I For a point process governed by parameter θ the pseudolikelihood is:

PL(θ;x) =

n∏
i=1

λθ(xi;x) exp(

∫
A

λθ(u;x)du)

I The maximum pseudolikelihood estimate of θ minimizes the above equation
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Point Pattern Data

Fitting point process models: Pseudolikelihood
I We need to take the log of the pseudolikelihood equation and approximate

the integral using a ”quadrature” scheme (see Berman and Turner, 1992)∫
A

λθ(u;x)du ≈
m∑
j=1

λθ(uj , x)wj

I Where uj are ”quadrature points” in A and wj ≥ 0 are the ”quadrature
weights”
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Point Pattern Data

Fitting point process models: Pseudolikelihood
I The quadrature points can be chosen as all data points, xi and the addition

of some dummy points uj , i.e. {x1, ..., xn} ⊂ {u1, ..., um}
I Then the log pseudolikelihood can be written:

logPL(θ;x) =

m∑
j=1

zj log λθ(uj ;x)− wjλθ(uj ;x)

I Where zj = 1 if uj is a data point, and zj = 0 if uj is a dummy point
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Point Pattern Data

Fitting point process models in R
I In R spatstat the function ppm fits models by pseudolikelihood based on the

conditional intensity λθ(u, x)

I The model must be loglinear in the parameters θ

I For example, the Strauss process can be written:

log λ(u, x) = log β + log γp

I So θ = (log β, log γ) are the ”regular parameters” and the parameter driving
the interaction, p is the ”irregular parameter”
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Point Pattern Data

Fitting point process models in R
I Thus in spatstat ppm the conditional intensity is split into first and higher

order terms:

log λθ(u, x) = ηS(u) + φV (u, x)

I The first order term S(u) describes the spatial inhomogeneity of the intensity
(including covariate effects) and the higher order term V (u, x) describes the
interactions between points
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Point Pattern Data

Fitting point process models in R
I The general form of ppm is ppm(X, trend, interaction,...)

I The trend argument specifies any spatial trend or covariate effects and is
written as an R formula

I The default trend formula is ∼ 1, which indicates λ(u) = 1, corresponding to
a process without spatial trend or covariate effects. The formula ∼ x
indicates the vector statistic λ(x, y) = (1, x) corresponding to a spatial trend
of the form exp(α+ βx), where α, β are coefficient parameters to be
estimated, while ∼ x+ y indicates λ(x, y) = (1, x, y) corresponding to
exp(α+ βx+ γy)
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Point Pattern Data: Density Based Clustering

I Density-based spatial clustering is a data clustering algorithm that falls under
”machine learning” techniques.

I It was popularly implemented in 1996 by Ester et al as ”DBSCAN”
(Proceedings of the Second International Conference on Knowledge Discovery
and Data Mining (KDD-96): A density-based algorithm for discovering
clusters in large spatial databases with noise).

I Density-based approaches like DBSCAN model clusters as high-density
clumps of points.
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Point Pattern Data: Density Based Clustering

I Density based clustering is different than other clustering algorithms such as
k-means clustering:

In k-means clustering, each cluster is represented by a centroid, and points are
assigned to whichever centroid they are closest to.
In DBSCAN, there are no centroids, and clusters are formed by linking nearby
points to one another.
In k-means you have to choose the number of clusters before running the
algorithm.
In DBSCAN you choose the minimum number of points that must be in a
cluster of radius ε to consider it a cluster.
Clusters from density-based algorithms are arbitrary in shape.
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Point Pattern Data: Density Based Clustering

The ε defines the neighbourhood, where points within ε radius from another point
are considered part of a cluster as long as it fulfills that there are a certain number
of MinPts.
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Point Pattern Data: Density Based Clustering

M. Franklin (USC) PM569 November 15, 2019 56 / 61



Point Pattern Data: Density Based Clustering

Here is a good visualization of DBSCAN results:
https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/
A better version in Hierarchical DBSCAN, where we do not need to set the ε
neighbourhood. With HDBSCAN we do set the minimum number of points that
we wish to have in a cluster (2 to n). A larger MinPts means larger clusters.

I HDBSCAN uses the concept of mutual reachability, where we look at
distances that connect all of the points

I A tree (hierarchy) is formed based on these distances
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Point Pattern Data: Density Based Clustering
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Point Pattern Data: Density Based Clustering

If we cut the tree at a given distance (ε) that is giving us the same estimate as
DBSCAN
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Point Pattern Data: Density Based Clustering

The tree has to be condensed somehow and provide us the main clusters. Using
the minimum cluster size the algorithm walks through the hierarchy and at each
split asks if one of the new clusters created by the split has fewer points than the
minimum cluster size.
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Point Pattern Data: Density Based Clustering

In this example with min number of points of 5, there are 3 clusters chosen
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